
Session NM057Session NM057

Library RoutinesLibrary Routines

Joel SnyderJoel Snyder
Opus1Opus1

Slide 95 Portions Copyright © 1996, Opus1, Process Software, TGV

Course Roadmap

NM055 (11:00-12:00) Important Terms and
Concepts

TCP/IP and Client/Server Model
Sockets and TLI
Client/Server in TCP/IP

NM056 (1:00-2:00) Socket Routines
NM057 (2:00-3:00) Library Routines
NM058 (3:00-4:00) Sample Client/Server
NM059 (4:00-5:00) VMS specifics (QIOs)
NM067 (6:00-7:00) Clinic - Q&A

Slide 96 Portions Copyright © 1996, Opus1, Process Software, TGV

Library Routines
 Roadmap

The byteorder routines
The inet routines
The /etc/* database routines

Slide 97 Portions Copyright © 1996, Opus1, Process Software, TGV

Byte order routines give
machine independence

Remember that network byte order is not
necessarily the same as host byte order
Always use byteorder routines when you
want to look inside of protocol headers or
call protocol routines
What you do in your own code for byte order
is up to you

If you are moving strange things (not ASCII)
over the network, you should be using
RPC/XDR

Slide 98 Portions Copyright © 1996, Opus1, Process Software, TGV

Byte Order converts
16 and 32 bit quantities

#include <sys/params.h>

u_long htonl(u_long hostlong); /* converts 32-bit host to 32-bit network*/

u_short htons(u_short hostshort); /* converts 16-bit host to 16-bit network */

u_long ntohl(u_long netlong); /* converts 32-bit network to 32-bit host */

u_short ntohs(u_short netshort); /* converts 16-bit network to 16-bit host */

Slide 99 Portions Copyright © 1996, Opus1, Process Software, TGV

Inet routines manipulate
Internet addresses

Internet addresses are expressed often as
character strings (e.g., “192.245.12.2”)
Internet addresses internally are all numbers
(e.g., 0xABADF00D)
Inet routines convert between the two (and
do other things)

Slide 100 Portions Copyright © 1996, Opus1, Process Software, TGV

2 most important ones:
inet_addr and inet_ntoa

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

u_long inet_addr(char *cp); /* convert string 192.245.12.2 to number */
char * inet_ntoa(struct in_addr in); /* convert number to string */

Calling Sequence:

Example:

/* We have the IP address in the character array pointed to by host */
address = inet_addr(host);
if (address == INADDR_NONE) {

printf(“Your host name %s is not well formed.\n”, host);
return FALSE;

}

Slide 101 Portions Copyright © 1996, Opus1, Process Software, TGV

Converting names is not the
same as converting strings

inet_addr() and inet_ntoa() convert
“192.245.12.2” and 0x0BADF00D back and
forth.

This is purely a mechanical operation
What about converting “Tennis.Opus1.COM”
to a number?

Now we have to go to the network databases

Slide 102 Portions Copyright © 1996, Opus1, Process Software, TGV

In early TCP/IP world,
network databases are files

List of all hosts in the world

List of all networks in the Internet

List of all protocols on this system

List of all services on this system

/etc/hosts

/etc/networks

/etc/protocols

/etc/services

What are we keeping track of? Where are we storing it?

Slide 103 Portions Copyright © 1996, Opus1, Process Software, TGV

The Domain Name System
helped a lot!

List of all hosts in the world

List of all networks in the Internet

List of all protocols on this system

List of all services on this system

on the network!

<not used any more>

/etc/protocols

/etc/services

What are we keeping track of? Where are we storing it?

Slide 104 Portions Copyright © 1996, Opus1, Process Software, TGV

Ob: TCPware-specific info

Local information - can edit these files:
TCPWARE:HOSTS. - local host definitions;
initialized during configuration
TCPWARE:SERVICES. - initial defaults
TCPWARE:PROTOCOLS. - initial defaults
TCPWARE:NETWORKS. - initial defaults

DNS client process provides this information
to applications
DNS client automatically updated when files
are edited

Slide 105 Portions Copyright © 1996, Opus1, Process Software, TGV

Ob: Multinet-specific info

multinet:hosts.local
has your local additions to
hosts, networks, protocols,
services

$ multinet host_table compile
$ @multinet:install_databases

hosts.services has
TGV’s list of hosts,
networks, protocols,
services - Don’t Touch!

hosts.txt was for Milnet
host tables. Should not be
of any interest to anyone
anymore.

network_database.

hosttbluk.dat These two files (installed as global
sections) plus the DNS (if used on
your system) are used to answer
queries from local applications.

Slide 106 Portions Copyright © 1996, Opus1, Process Software, TGV

Translating names to
addresses

Goal is to have IP address in a 32-bit
quantity
We can start with either a domain name, e.g.
Hearts.ACES.COM, or an IP address, e.g.
198.102.68.2
We can also take service, protocol, and
network names and convert them to the
relevant structures, e.g. TELNET, FTP, etc.

Slide 107 Portions Copyright © 1996, Opus1, Process Software, TGV

Retrieve information from
databases with routines

List of all hosts in the world

List of all networks in the Internet

List of all protocols on this system

List of all services on this system

on the network!

<not used any more>

/etc/protocols

/etc/services

What are we keeping track of? Where are we storing it? How do we see it?

gethostbyname(),
gethostbyaddr()

getnetbyname(),
getnetbyaddr()

getprotobyname(),
getprotobynumber()

getservbyname(),
getservbyport()

Slide 108 Portions Copyright © 1996, Opus1, Process Software, TGV

There is, however,
a little complication

The getyyybyxxx() routines return
information in structures

gethostby xxx() returns hostent
getservby xxx () returns servent
getprotoby xxx () returns protoent
getnetby xxx () returns netent

Slide 109 Portions Copyright © 1996, Opus1, Process Software, TGV

Host Routines:
Overview

Used to return host addresses from
databases or name servers
Can query by host name

DNS gurus: A records
Can query by address

DNS gurus: PTR records
Returns everything in hostent structures

Slide 110 Portions Copyright © 1996, Opus1, Process Software, TGV

Host Routines:
Synopsis

#include <netdb.h>

struct hostent * gethostbyname (char *name);
/* returns pointer to an object describing an Internet
host referenced by name */

struct hostent * gethostbyaddr (char *addr, int len, int
type);

/* returns pointer to an object describing an Internet
host referenced by address */
/* len = length of address */
/* type = type of address, should be AF_INET */

Slide 111 Portions Copyright © 1996, Opus1, Process Software, TGV

hostent structure

A hostent structure (defined in <netdb.h>)
which is:

struct hostent {
char *h_name: /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */
int h_length; /* length of each address */
char **h_addr_list; /* list of addresses */

};

Slide 112 Portions Copyright © 1996, Opus1, Process Software, TGV

Service Routines:
Overview

Used to convert service names (SMTP,
POP, FTP, TELNET) to numbers
Also returns the preferred protocol for use
with that service
Returns everything in servent structures

Slide 113 Portions Copyright © 1996, Opus1, Process Software, TGV

Service Routines:
Synopsis

#include <netdb.h>

struct servent * getservbyname (char *name, char *proto);
/* returns pointer to an object describing a service
on the local machine referenced by name and protocol
to be used */

struct servent * getservbyport (int port, char * proto);
/* returns pointer to an object describing a service
on the local machine referenced by port and protocol
number */
/* “proto” may be left null */

Slide 114 Portions Copyright © 1996, Opus1, Process Software, TGV

servent structure

A servent structure is:
struct servent {

char **s_name; /* official service name */
char **s_aliases; /* alias list */
int s_port; /* port number, network byte order */
char *s_proto; /* protocol to use */

};

Slide 115 Portions Copyright © 1996, Opus1, Process Software, TGV

Protocol Routines:
Overview

Used to convert protocol names (IP, TCP,
UDP) to numbers
Returns everything in protoent structures
Only ever used to be absolutely correct
when calling socket() routines

Slide 116 Portions Copyright © 1996, Opus1, Process Software, TGV

Protocol Routines:
Synopsis

#include <netdb.h>

struct protoent * getprotobyname (char *name);
/* returns pointer to an object describing a protocol
which may or may not be offered on the local machine,
by name */

struct protoent * getprotobynumber (int proto);
/* returns pointer to an object describing a protocol
which may or may not be offered on the local machine,
by number */

Slide 117 Portions Copyright © 1996, Opus1, Process Software, TGV

servent structure

A protoent structure is:
struct protoent {

char *s_name; /* official name of protocol */
char **p_aliases; /* alias list */
int p_proto; /* protocol number */

};

Slide 118 Portions Copyright © 1996, Opus1, Process Software, TGV

Network Routines:
Overview

Used to convert network names to numbers
Returns everything in netent structures
Never used any more

Library Routines
Key Concepts

Use byteorder routines (htonl, ntohl, etc.) to keep
protocol headers straight
Use inet routines (inet_addr, inet_ntoa) to translate
simple numeric strings to numbers
Use netdb routines (gethostbyname, etc.) to look
up information in the network databases

OpenVMS Specific IssuesOpenVMS Specific Issues

Slide 121 Portions Copyright © 1996, Opus1, Process Software, TGV

Using Sockets on VMS

Any application code can use sockets
Any language can use sockets (e.g. Tony
McCraken’s Bare Bones Telnet BBTN
program in MACRO-32)
Data structures and library routines pre-
defined for the C language

Slide 122 Portions Copyright © 1996, Opus1, Process Software, TGV

C Run-Time Integration

DEC has integrated support for sockets into
VAX C and DEC C run-time libraries
Must use DEC TCP/IP Services (UCX) or
emulation
Should use header files that come with VAX
C/DEC C with this interface
Can use read() and write()

Slide 123 Portions Copyright © 1996, Opus1, Process Software, TGV

TCPware’s Socket Library

DISCOURAGED! Be Vendor Neutral!
Pre-dates VAX C/DEC C API (and UCX)
Socket library provided as shareable image
and object library

Slide 124 Portions Copyright © 1996, Opus1, Process Software, TGV

MultiNet’s Socket Library

DISCOURAGED! Be Vendor Neutral!
Pre-dates VAX C/DEC C API (and UCX)
Socket library provided as shareable image
Not integrated with C RTL I/O subsystem

Must use socket_read(), socket_write() and
socket_close() on MultiNet sockets
Separate socket_errno value and
socket_perror() routine

Slide 125 Portions Copyright © 1996, Opus1, Process Software, TGV

TCPware Header Files

Don’t use. Modern versions of DEC C
include all the routines you need
Header files under TCPWARE_INCLUDE:

Slide 126 Portions Copyright © 1996, Opus1, Process Software, TGV

MultiNet Header Files

Don’t use. Modern versions of DEC C
include all the routines you need
Header files under
MULTINET_ROOT:[MULTINET.INCLUDE]

<sys/types.h> becomes
MULTINET_ROOT:[MULTINET.INCLUDE.SYS]TYPES.H

<resolv.h> becomes
MULTINET_ROOT:[MULTINET.INCLUDE]RESOLV.H

There are bugs in the Multinet header files
We warned you!

Slide 127 Portions Copyright © 1996, Opus1, Process Software, TGV

Multinet - Easing the transition

You can ease the transition by defining
logical names

$ define inc
multinet_root:[multinet.include.]/translation=con
cealed
$ define sys inc:[sys],sys$share:
$ define net inc:[net],sys$share:
$ define netinet inc:[netinet],sys$share:

These are not needed for modern versions
of DEC C; the compiler has it all figured out

OpenVMS Specific
Key Concepts

Don’t use Multinet or TCPware specific
routines unless you have to
Portable sockets are usually the way to go
Session NM059 (4:00) will discuss when and
how to use QIOs for VMS

