
Session NM056Session NM056

Programming TCP/IPProgramming TCP/IP
with Socketswith Sockets

Geoff BryantGeoff Bryant
Process softwareProcess software

Slide 57 Portions Copyright © 1996, Opus1, Process Software, TGV

Course Roadmap

NM055 (11:00-12:00) Important Terms and
Concepts

TCP/IP and Client/Server Model
Sockets and TLI
Client/Server in TCP/IP

NM056 (1:00-2:00) Socket Routines
NM057 (2:00-3:00) Library Routines
NM058 (3:00-4:00) Sample Client/Server
NM059 (4:00-5:00) VMS specifics (QIOs)
NM067 (6:00-7:00) Clinic - Q&A

Slide 58 Portions Copyright © 1996, Opus1, Process Software, TGV

TCP/IP Programming

Slides and Source Code available via anonymous FTP:

Host:: ftp.process.com
Directory: [pub.decus]
Slides: DECUS_F96_PROG.PS
Examples: DECUS_F96_PROG_EXAMPLES.TXT

Host: ftp.opus1.com
Slides: DECUS_F96_PROG.PS
Examples: DECUS_F96_PROG_EXAMPLES.TXT

Slide 59 Portions Copyright © 1996, Opus1, Process Software, TGV

Programming with Sockets
Roadmap

Berkeley Socket History
Overview of the Socket Paradigm
Socket addresses
Other programming models

Slide 60 Portions Copyright © 1996, Opus1, Process Software, TGV

Berkeley Socket History

Documented in such books as
Stevens’s Unix Network Programming
Comer’s Internetworking with TCP/IP, vol III

First provided with Berkeley Software
Distribution (BSD 4.1c) Unix for the VAX
Popularized in the 1986 4.3BSD release

Slide 61 Portions Copyright © 1996, Opus1, Process Software, TGV

Other Programming Models

Socket model is widely used
mainly due to wide implementation of BSD
networking kernel
Avaible for Unix, Windows, VMS, ...

Other models may be used in different
environments

STREAMS model (UNIX System V)
Others

Slide 62 Portions Copyright © 1996, Opus1, Process Software, TGV

Socket Paradigm Overview

A socket is a communications endpoint
In BSD networking, it is a data structure
within the kernel
A socket is “named” by its socket address
A connection is represented by two
communicating sockets

Slide 63 Portions Copyright © 1996, Opus1, Process Software, TGV

Using sockets is like using
the file system

Server

bind()

listen()

accept()

socket()

connect()

write()

read()

close()

read()

socket()

write()

connection
establishment

block until
connection from
client

Client

close()

Slide 64 Portions Copyright © 1996, Opus1, Process Software, TGV

Servers sit in a tight loop

bind()

listen()

accept()

close()

read()

socket()

write()

Slide 65 Portions Copyright © 1996, Opus1, Process Software, TGV

Connectionless
Client/Server is simpler

Server

bind()

socket()

sendto()
recvfrom()

socket() Client

bind()

block until data
from client

sendto() recvfrom()

Slide 66 Portions Copyright © 1996, Opus1, Process Software, TGV

A socket is just
a data structure

Protocol Family

Service

Local Address

Remote Address

Operating System
Channel List

socket

Slide 67 Portions Copyright © 1996, Opus1, Process Software, TGV

In C,
a socket doesn’t have much

Protocol Family

Service

Local Address

Remote Address

socketinteger: always set to
be PF_INET for
TCP/IP programming integer: set to be

SOCK_STREAM (TCP),
SOCK_DGRAM (UDP),
or SOCK_RAW (raw IP)sockaddr: a 2-octet

address family
identifier and then 14
octets of address-
specific information

Slide 68 Portions Copyright © 1996, Opus1, Process Software, TGV

Families and Types

Address Families (or Protocol Families)
AF_UNIX: Unix domain sockets
AF_INET: Internet Protocols
AF_NS: Xerox NS Protocols
AF_IMPLINK: IMP link layer (obsolete)

Types:
SOCK_STREAM: Stream socket (TCP)
SOCK_DGRAM: Datagram socket (UDP)
SOCK_RAW: Raw socket (IP)

Slide 69 Portions Copyright © 1996, Opus1, Process Software, TGV

TCP/IP addresses are
special cases of sockaddr

Protocol Family

Service

Local Address

Remote Address

socket

sockaddr: a 2-octet
address family
identifier and then 14
octets of address-
specific information

struct sockaddr_in {
 u_short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
}

struct sockaddr {
 u_short sa_family;
 char sa_data[16];
}

Slide 70 Portions Copyright © 1996, Opus1, Process Software, TGV

sockaddr unveiled

struct sockaddr_in {
 u_short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
}

sin_family: AF_INET for all TCP/IP
addresses

sin_port: 16-bit port number (as
used in UDP & TCP headers)

sin_addr: 32-bit IP address

/*
 * Internet address (a structure for historical reasons)
 */
struct in_addr {
 union {
 struct { u_char s_b1,s_b2,s_b3,s_b4; } S_un_b;
 struct { u_short s_w1,s_w2; } S_un_w;
 u_long S_addr;
 } S_un;
#define s_addr S_un.S_addr

Slide 71 Portions Copyright © 1996, Opus1, Process Software, TGV

Remember our goal:
open()

TCP/IP socket programming is mostly
read() and write() subroutine calls
All of the socket routines are there to do the
equivalent of an open() in the file system.

Slide 72 Portions Copyright © 1996, Opus1, Process Software, TGV

Five routines are used to
replace the open() call

Protocol Family

Service

Local Address

Remote Address

socket socket() : allocate socket in memory, fill in
protocol family and service fields

bind() : fill in the local address part (local
sockaddr). OPTIONAL for most clients

listen() : tell network kernel that you want
to receive connects (“passive open”)

accept() : ask network kernel to hand you
the next incoming connect (“passive open”)

connect() : tell network kernel to connect to
the other side (“active open”)

Slide 73 Portions Copyright © 1996, Opus1, Process Software, TGV

Overview of Sockets
(one more time)

Get the socket open somehow
socket(), bind(), listen(), accept(), connect()

Read and write from it
read(), write()

When done, close the socket
close()

Slide 74 Portions Copyright © 1996, Opus1, Process Software, TGV

Programming with Sockets
Key Concepts

A socket is a data structure representing a
connection
To open a connection

Fill in the data structure
Link it to the network kernel
Link it to the operating system

Reading and writing uses the same calls as
the file system

Coding with SocketsCoding with Sockets

Slide 76 Portions Copyright © 1996, Opus1, Process Software, TGV

General Flow for
Servers/Clients is different

Server

bind()

listen()

accept()

socket()

connect()

write()

read()

close()

read()

write()

connection
establishment

block until
connection from
client

Client

close()

socket()

Let’s start
with clients
because
they’re
easier

ClientsClients

Slide 78 Portions Copyright © 1996, Opus1, Process Software, TGV

Step 1:
Get Socket

socket()

connect()

write()

read()

close()

int socket(int domain, int type, int protocol);

int s, domain, type, protocol;

domain = AF_INET; /* always the same */

type = SOCK_STREAM; /* STREAM for TCP */

protocol = 0;

s = socket(domain, type, protocol);

if (s < 0) ERROR(“Cannot create socket”);

Slide 79 Portions Copyright © 1996, Opus1, Process Software, TGV

Step 2:
Fill in remote address fields

socket()

connect()

write()

read()

close()

#define SMTP_PORT 25

#define IP_ADDRESS 0xC0F50C02 /*192.245.12.2*/

struct sockaddr_in sin;

sin.sin_family = AF_INET;

sin.sin_port = htons(SMTP_PORT);

sin.sa_addr = htonl(IP_ADDRESS);

Slide 80 Portions Copyright © 1996, Opus1, Process Software, TGV

Step 3:
Connect to other side

socket()

connect()

write()

read()

close()

int connect(int s, struct sockaddr*name, int
namelen);

int status;

status = connect(s, (struct sockaddr*)sin,
sizeof(sin));

if (status != 0)

ERROR(“Cannot connect to other side”);

Slide 81 Portions Copyright © 1996, Opus1, Process Software, TGV

Step 4:
Use the socket

socket()

connect()

write()

read()

close()

char buf[LINELEN+1];

/*
 * Now go into a loop, reading data from the network, writing
 * it to the terminal and reading data from the terminal,
 * writing it to the network...
 */

while ((n = read(s, buf, LINELEN)) > 0) {
 fwrite(buf, n, 1, stdout);

 if (!fgets(buf, LINELEN, stdin)) break;
 write(s, buf, strlen(buf));
 }
 if (n < 0) {
 ERROR(“Cannot read from socket!”);
}

Slide 82 Portions Copyright © 1996, Opus1, Process Software, TGV

Step 5:
Shut it down when done

socket()

connect()

write()

read()

close()

status = close(s);
if (status != 0)

ERROR(“Can not close socket”);

ServersServers

Slide 84 Portions Copyright © 1996, Opus1, Process Software, TGV

Server Review and
Overview

bind()

listen()

accept()

close()

read()

write()

socket() socket() : allocate socket in memory, fill in
protocol family and service fields

bind() : fill in the local address part (local
sockaddr). OPTIONAL for most clients

listen() : tell network kernel that you want
to receive connects (“passive open”)

accept() : ask network kernel to hand you
the next incoming connect (“passive open”)

Slide 85 Portions Copyright © 1996, Opus1, Process Software, TGV

Step 1:
Get Socket

int socket(int domain, int type, int protocol);

int s, domain, type, protocol;

domain = PF_INET; /* always the same */

type = SOCK_STREAM; /* STREAM for TCP */

protocol = 0;

s = socket(domain, type, protocol);

if (s < 0) ERROR(“Cannot create socket”);

bind()

listen()

accept()

close()

read()

write()

socket()

This should look vaguely
familiar...

Slide 86 Portions Copyright © 1996, Opus1, Process Software, TGV

Step 2:
Fill in local address fields

bind()

listen()

accept()

close()

read()

write()

socket()

INADDR_ANY is a shorthand way of
saying “I don’t care what the local
address is”...

#define SMTP_PORT 25

#define IP_ADDRESS 0xC0F50C02 /*192.245.12.2*/

struct sockaddr_in sin;

sin.sin_family = AF_INET;

sin.sin_port = htons(SMTP_PORT);

sin.sa_addr = INADDR_ANY;

Slide 87 Portions Copyright © 1996, Opus1, Process Software, TGV

Step 3:
“Bind” address to the socket

bind()

listen()

accept()

close()

read()

write()

socket()

INADDR_ANY is a shorthand way of
saying “I don’t care what the local
address is”...

int bind(int s, struct sockaddr*name, int
namelen);

int status;

status = bind(s, (struct sockaddr*)sin,
sizeof(sin));

if (status != 0)

ERROR(“Cannot bind to local address”);

Slide 88 Portions Copyright © 1996, Opus1, Process Software, TGV

Step 4:
Tell the kernel to listen

bind()

listen()

accept()

close()

read()

write()

socket() #define MAX_BACKLOG 5

int listen(int s, int backlog);

int status;

status = listen(s, MAX_BACKLOG);

if (status != 0)

ERROR(“Cannot ask kernel to listen”);

Slide 89 Portions Copyright © 1996, Opus1, Process Software, TGV

Step 5:
Block waiting for connect

bind()

listen()

accept()

close()

read()

write()

socket() int accept(int s, struct sockaddr *addr, int
*addrlen);

int status, addrlen, vs;

struct sockaddr_in sin2;

addrlen = sizeof(sin2);

vs = accept(s, (struct sockaddr*)&sin2,
&addrlen);

if (vs < 0)

ERROR(“Cannot accept a connection.”);

Slide 90 Portions Copyright © 1996, Opus1, Process Software, TGV

Step 6:
Read and Write

bind()

listen()

accept()

close()

read()

write()

socket()
/* Get the line from the client. */

read (vs, buf, 256);

/* Translate the logical name. */
log_name = getenv (buf);

/* Get the definition string and add a new line to it. */
sprintf (buf, "%s\n", log_name);

/* Write the translation to the client. */
write (vs, buf, strlen (buf));

Yes, this code has lots of holes in it.
But you get the picture of what we’re
trying to do.

Slide 91 Portions Copyright © 1996, Opus1, Process Software, TGV

Step 7:
Tear down when done

bind()

listen()

accept()

close()

read()

write()

socket() status = close(s);
if (status != 0)

ERROR(“Can not close socket”);

Slide 92 Portions Copyright © 1996, Opus1, Process Software, TGV

Of course, there are more
routines than those

socket
connect
write
read
close
bind
listen
accept
recv, recvmsg
recvfrom
send, sendmsg
sendto
shutdown
getpeername
getsockopt
setsockopt

Create a descriptor for use in network communication
Connect to a remote peer (client)
Send outgoing data across a connection
Acquire incoming data from a connection
Terminate communication and deallocate a descriptor
Bind a local IP address and protocol port to a socket
Place the socket in passive mode and set backlog
Accept the next incoming connection (server)
Receive the next incoming datagram
Receive the next incoming datagram and record source addr.
Send an outgoing datagram
Send an outgoing datagram to a particular dest. addr.
Terminate a TCP connection in one or both directions
After a connection arrives, obtain remote machine’s address
Obtain the current options for a socket
Change the options for a socket

Slide 93 Portions Copyright © 1996, Opus1, Process Software, TGV

Coding with Sockets
Key Concepts

All clients and servers basically look the
same
Follow a template, but make sure you
understand what you’re doing

Lots of templates are wrong
Lots of templates don’t do what you think they
do

