TCP/IP Programming

Joel Snyder, Opus1 Geoff Bryant, Process Software

Portions Copyright © 1996 TGV Software, Inc., Copyright © 1996 Process Software Corp. Copyright © 1996 Opus1

Course Roadmap

NM055 (11:00-12:00) Important Terms and Concepts

TCP/IP and Client/Server Model

Sockets and TLI

Client/Server in TCP/IP

NM056 (1:00-2:00) Socket Routines

NM057 (2:00-3:00) Library Routines

NM058 (3:00-4:00) Sample Client/Server

NM059 (4:00-5:00) VMS specifics (QIOs)

NM067 (6:00-7:00) Clinic - Q&A

TCP/IP Programming

Slides and Source Code available via anonymous FTP:

Host:: ftp.process.com Directory: [pub.decus] Slides: DECUS_F96_PROG.PS Examples: DECUS_F96_PROG_EXAMPLES.TXT

Host: ftp.opus1.com Slides: DECUS_F96_PROG.PS Examples: DECUS_F96_PROG_EXAMPLES.TXT

Session NM055

TCP/IP Programming Terms and Concepts

Joel Snyder Opus1

Terms and Concepts Overview

- What is the TCP/IP model?
- What is the client/server model?
- What are sockets and TLI?
- What is network byte order?
- What is encapsulation? Multiplexing? Demultiplexing? Fragmentation?
- What are addresses?

The OSI Model (similar to the Holy Grail)

OSI layer	Function provided
Application	Network applications such as file transfer and terminal emulation
Presentation	Data formatting and encryption
Session	Establishment and maintenance of sessions
Transport	Provision for end-to-end reliable and unreliable delivery
Network	Delivery of packets of information, which includes routing
Data Link	Transfer of units of information, framing, and error checking
Physical	Transmission of binary data of a medium

TCP

- Transmission Control Protocol is defined by RFC-793
- TCP provides connection-oriented transport service
- End-to-end transparent byte-stream

UDP

User Datagram Protocol is defined by RFC-768

UDP provides datagram service

Connectionless

Client/Server is application-to-application

TCP/IP and DECnet are client/server networks

A client/server application has two parts One which runs on one side of the network One which runs on the other side of the network Differentiate this from a terminal-based network or most Netware applications

Clients and Servers use IPC to talk to each other

- Inter-Process Communication mechanisms let two cooperating applications communicate
- There are LOTS of IPC mechanisms for local communications
- The two popular TCP/IP based IPCs are Sockets (Berkeley Unix) and TLI (AT&T Unix System V)

Sockets is the standard API for TCP/IP IPC

- Normally, you'd have an operating system specific routine set to talk to the network
- In the world of standardized APIs, you would have an operating system independent set of routines
- Sockets takes it one step further: it makes the network look much like a file system

Life was easy when machines had 8-bit words

- Welcome to the concept of "network byte order"
- Remember that "network byte order" is not the same as "host byte order"
- You have to convert to network byte order!

VMS systems are little endian architectures

Big-endian architectures	Little-endian architectures							
Motorola 68xxx IBM 370	Intel 80x86 VAX & Alpha (VMS) PDP-11(sort of)							
0 1 2 3	3 2 1 0							
	Portions Copyright © 1996, Opus1, Process Software							

I.

Encapsulation adds control information to data

Things can be added on and peeled off at the ends												
Look at your average WWW query	9		Application Layer Data									
		HTTP header	Application Layer Data									
	TCP header	HTTP header	Application Layer Data									
IP heade	TCP header	HTTP header	Application Layer Data									
Ethernet IP header heade		HTTP header	Application Layer Data	Ethernet trailer								
14 20	20	192		4								

Make sure you memorize all of this encapsulation info

r	6 b	ytes		6 bytes	2 bytes	l	Jp to 150	0 bytes		4 bytes									
	Destination Source address address			Type field	Data field				CRC		Ethernet V2.0								
	6 bytes 6 bytes Destination Source Leng address address fie			Length field	· ·	Up to 1496 bytes Data field			bytes CRC IEEE 802.3										
[6 bytes 6 bytes			2 bytes	1 by	te 1	byte	*			4 k	bytes							
		estinati addres		Source address	Length field	DS.	AP S	SSAP	CTRL	. Da	ata field	С	RC	IEEE 802.3 with IEEE 802.2					
[Destination Sour		6 bytes	2 bytes	1 by	1 byte 1 byte DSAP SSAP CTR			3 bytes		2 by	tes	1492 bytes 4 bytes						
			Source address	Length field	DSA			CTRL	. c	UI	Ethe	rType	Data field CRC						
											SNAF	heade	er		-				
	6 bytes 6 bytes 2 bytes					ι	Up to 1500 bytes			4 bytes									
				Source address	Length field	FFFF	FFFF Data field			CRC		Novell proprietary							
Ľ						ļ											То	ken	Ring
Γ				6 bytes	bytes 6 bytes 1		1 by	/te	1 byte		4472 (4 Mbps or 17800 (16 Mbps) bytes					4 byte	S		
	SD AC		FC	C Destination address	Sou addr		RIF	DS	AP	SSAP	CTRL	-	Data field				CRC F		FS
								• •											FDDI
			6 bytes 6 bytes 2 bytes		1 by	1 byte 1 byte			4472 bytes 4		4 byte	es 1	byte	1 byte	,				
Pre	reamble SD FC Slide 24		Destin addr		Source addre		Length field	DS	SAP SSAP		CTRL				ED FS Process Software, TGV		TGV		

Segmentation and Reassembly **Application Data** Message TCP TCP **TCP** Segments IP IP **IP** Packets Slide 26 Portions Copyright © 1996, Opus1, Process Software, TGV

Addressing identifies entities in the network

- Each layer in a TCP/IP stack has an address made up of two parts
 - The address of everything below it
 - The address of itself
- In some cases, lower-level addresses are implied and do not have to be stated
 - For example, Ethernet MAC addresses are tied directly to IP addresses, so they can be omited

Addresses are assigned by different entities

- IP addresses are assigned by the InterNIC and are managed by the local network manager
- Protocol numbers are assigned by the IANA (Internet Assigned Number Authority) and are fixed across the Internet (RFC 1700)

Application port numbers come from two sources

- Servers are assigned by IANA (RFC 1700)
- Clients are handled by the network kernel

IP Addressing

- IP is the Internet Protocol, currently version
 4
- IPNG is the Next Generation (also known as IPv6)
- IP is defined by RFC-791
- IP uses four octet (8-bit byte) addresses
- IP takes care of getting packets to destination

Client and Server Port Numbers are coordinated

Defined in RFC 1700

NORMALLY, Client port numbers are high numbers starting at 1024

These are called "ephemeral ports"

You only pick server ports

- A server running on a "well-known port" lets the operating system know what port it wants to listen on
- A <u>client</u> simply lets the operating system pick a new port (ephemeral) that isn't already in use

Well-Known-Servers

- Public services (e.g. and email server) are assigned a particular number by IANA
- These numbers are stored in the Internet Assigned Numbers RFC (changing number, latest is 1797)
- These are called Well-Known-Servers
- Examples of these include TELNET (23), SMTP (25), FINGER (79), HTTP (80), RLOGIN (512) and others

Important Terms Key Concepts

- TCP/IP networks are layered
- TCP/IP uses a client/server paradigm
- Addressing triples (IP, protocol, port) identify applications in TCP/IP
- A pair of triples beats a full house

Client/Server in TCP/IP

Client/Server in TCP/IP Overview

- What is the server process (INETD)?
- What are ephemeral ports?
- How can you have multiple connections?
- How are processes identified?
- What is Connection-oriented? Connectionless?

Making the initial connection to a server

- When a connection enters a TCP/IP system, someone has to handle it
 - Either a running daemon is waiting (your application)
 - or a running daemon is waiting (InetD)
- Trade off efficiency for performance
 - Choose whichever model you want based on individual application characteristics
 - Seldom used? Inetd
 - Constantly used? <u>True Daemon</u>

Portions Copyright © 1996, Opus1, Process Software, TGV

A Server may connect to multiple clients

- Each connection is a <u>pair</u> of triples (IP, protocol, port)
- The server side may remain the same across multiple clients
- Of course, the server programmer has to keep it all straight

Applications are known by their port numbers

- A process is identified by its 16-bit port number
- If a server uses both TCP and UDP, it will often use the same port number for both protocols

Protocol number means no ambiguity

The concept of low-numbered ports as "privileged" disappeared with PCs

Don't base your security on port numbers!

Some services use a meet-me approach

TCP/IP supports CL and CO at transport layer

- CO = Connection Oriented
 TCP
 "Stream"
 CL = Connectionless
 UDP
 "Datagram"
- CL can be provided by pure IP
 Unusual
 "Raw"

Connection oriented is like a phone call

- Connection oriented data communications arrived before connectionless
 - Used primarily over noisy serial lines in original intention.
 - not necessarily an issue with TCP
 - Two stations must establish a connection before data is transmitted.
 - Connection is strictly maintained using sequence numbers, acknowledgments, retries and so on.

Connectionless is like a postcard

- Connectionless allows data to be transmitted without a pre-established connection between two stations.
 - This type of service flourished with the proliferation of LANs.
 - LANs tend to have a very low error rate and a connection need not be established to ensure the integrity of the data.
 - This type of service does not provide error recovery, flow or congestion control.
 - upper layer network protocols can accomplish this.
 - It requires less overhead and is implicitly faster.

Nike style data communications

Client/Server in TCP/IP Key Concepts

- Servers are handled in one of two ways: resident daemons or InetD
- Server ports are low-numbers; client ports are high-numbered ephemeral ports
- A server can talk to many clients if the programmer can keep them straight
 TCP is CO; UDP is CL