
TCP/IP ProgrammingTCP/IP Programming

Joel Snyder, Opus1
Geoff Bryant, Process Software

Portions Copyright © 1996 TGV Software, Inc.,
 Copyright © 1996 Process Software Corp.
 Copyright © 1996 Opus1

Slide 2 Portions Copyright © 1996, Opus1, Process Software, TGV

Course Roadmap

NM055 (11:00-12:00) Important Terms and
Concepts

TCP/IP and Client/Server Model
Sockets and TLI
Client/Server in TCP/IP

NM056 (1:00-2:00) Socket Routines
NM057 (2:00-3:00) Library Routines
NM058 (3:00-4:00) Sample Client/Server
NM059 (4:00-5:00) VMS specifics (QIOs)
NM067 (6:00-7:00) Clinic - Q&A

Slide 3 Portions Copyright © 1996, Opus1, Process Software, TGV

TCP/IP Programming

Slides and Source Code available via anonymous FTP:

Host:: ftp.process.com
Directory: [pub.decus]
Slides: DECUS_F96_PROG.PS
Examples: DECUS_F96_PROG_EXAMPLES.TXT

Host: ftp.opus1.com
Slides: DECUS_F96_PROG.PS
Examples: DECUS_F96_PROG_EXAMPLES.TXT

Session NM055Session NM055

TCP/IP ProgrammingTCP/IP Programming
Terms and ConceptsTerms and Concepts

Joel SnyderJoel Snyder
Opus1Opus1

Slide 5 Portions Copyright © 1996, Opus1, Process Software, TGV

Terms and Concepts
Overview

What is the TCP/IP model?
What is the client/server model?
What are sockets and TLI?
What is network byte order?
What is encapsulation? Multiplexing?
Demultiplexing? Fragmentation?
What are addresses?

Slide 6 Portions Copyright © 1996, Opus1, Process Software, TGV

Networks are layered to
simplify construction

Data Link

Physical

Network

Transport

Session

Presentation

Application

Data Link

Physical

Network

Data Link

Physical

Network

Transport

Session

Presentation

Application

The Famous
OSI 7-Story

Apartment
Building with

attached
Parking Garage

Slide 7 Portions Copyright © 1996, Opus1, Process Software, TGV

The OSI Model
(similar to the Holy Grail)

Physical

Data Link

Network

Transport

Session

Presentation

Application

Transmission of binary data of a medium

Transfer of units of information, framing, and error checking

Delivery of packets of information, which includes routing

Provision for end-to-end reliable and unreliable delivery

Establishment and maintenance of sessions

Data formatting and encryption

Network applications such as file transfer and terminal
emulation

OSI layer Function provided

Slide 8 Portions Copyright © 1996, Opus1, Process Software, TGV

TCP/IP is (usually) sliced
up into four layers

Data
Link/Physi

cal

Network

Transport

Application

Network Network

Transport

Application

There are actually
more layers to

TCP/IP than this set
of four, but from the
programming point
of view, this will do

just fine.
Data

Link/Physi
cal

Data
Link/Physi

cal

Slide 9 Portions Copyright © 1996, Opus1, Process Software, TGV

We care most about the
two center layers

Application

TCP

(Transmission Control Protocol)

UDP

(User Datagram Protocol)

IP

(Internet Protocol)

hardware
interface

Application ApplicationApplication

Transport

Network

Physical/Dat
a Link

Slide 10 Portions Copyright © 1996, Opus1, Process Software, TGV

TCP

Transmission Control Protocol is defined by
RFC-793
TCP provides connection-oriented transport
service
End-to-end transparent byte-stream

Slide 11 Portions Copyright © 1996, Opus1, Process Software, TGV

UDP

User Datagram Protocol is defined by RFC-
768
UDP provides datagram service
Connectionless

Slide 12 Portions Copyright © 1996, Opus1, Process Software, TGV

Client/Server is
application-to-application

TCP/IP and DECnet are client/server
networks
A client/server application has two parts

One which runs on one side of the network
One which runs on the other side of the network

Differentiate this from a terminal-based
network or most Netware applications

Slide 13 Portions Copyright © 1996, Opus1, Process Software, TGV

Clients and Servers use
IPC to talk to each other

Inter-Process Communication mechanisms
let two cooperating applications
communicate
There are LOTS of IPC mechanisms for
local communications
The two popular TCP/IP based IPCs are
Sockets (Berkeley Unix) and TLI (AT&T Unix
System V)

Slide 14 Portions Copyright © 1996, Opus1, Process Software, TGV

Sockets is the standard API
for TCP/IP IPC

Normally, you’d have an operating system
specific routine set to talk to the network
In the world of standardized APIs, you would
have an operating system independent set
of routines
Sockets takes it one step further: it makes
the network look much like a file system

Slide 15 Portions Copyright © 1996, Opus1, Process Software, TGV

TCP/IP is a file system?

Routines to open
up a file

Routines to close
an open file

Routines to open
up a connection

Routines to close an
open connection

Read

Write

Yes, sockets treats
TCP/IP as if it were a

file system
(with some added complexity

in the open and close
routines)

Slide 16 Portions Copyright © 1996, Opus1, Process Software, TGV

It looks like a file, but it’s
really a network interface

Application
Application

write()

read()

write()

read()

Slide 17 Portions Copyright © 1996, Opus1, Process Software, TGV

Life was easy when
machines had 8-bit words

Welcome to the concept of “network byte
order”
Remember that “network byte order” is not
the same as “host byte order”
You have to convert to network byte order!

Slide 18 Portions Copyright © 1996, Opus1, Process Software, TGV

There are two ways to store
multi-byte integers

high order byte

high order byte

low order byte

low order byte

Address n

Address n

Address n+1

Address n+1

big endian

little endian

Slide 19 Portions Copyright © 1996, Opus1, Process Software, TGV

VMS systems are little
endian architectures

Big-endian architectures Little-endian architectures

Motorola 68xxx

IBM 370

Intel 80x86

VAX & Alpha (VMS)

PDP-11(sort of)

0 1 2 3 3 2 1 0

Slide 20 Portions Copyright © 1996, Opus1, Process Software, TGV

Relax: you could be doing
Ethernet and Token Ring

. . . .

Byte 0 Byte 1 Byte 5

Byte 0 Byte 1 Byte 5
Source address

Bit 0

Bit 0

Bit 7
Transmitted first

Bit 7
Transmitted first

Destination address

Type field

6 bytes

6 bytes

2 bytes

46 - 1500
 bytes

4 bytes

Multicast bit

LSB MSB

M

. . . .

Transmission
sequenceDestination

address

Source
address

Data
field

Frame
Check

Sequence

Bits within bytes are
transmitted left to right

Slide 21 Portions Copyright © 1996, Opus1, Process Software, TGV

Encapsulation adds control
information to data

Trailers HeadersNow is the time for all good

File server
Client workstation

Headers TrailersRequest block of data

Request

Response

Data field

Data from user program such as an application
program or session control information

Network
headers

Network
trailers

men to come to the aid of

Response

of their country

Response

Headers

Headers

Trailers

Trailers

Now is the time
for all good men
to come to the
aid of their
country

Slide 22 Portions Copyright © 1996, Opus1, Process Software, TGV

Each layer encapsulates
the layer below it

Physical

Data Link

Network

Transport

Session

Presentation

Application

Data link
header

Network layer
header

Transport layer
 header

Session layer
 header

Presentation and
Application layer

 header

OSI model

Network packet

Data link
trailers

Slide 23 Portions Copyright © 1996, Opus1, Process Software, TGV

Things can be added on
and peeled off at the ends

Application
Layer Data

Application
Layer Data

Application
Layer Data

Application
Layer Data

Application
Layer Data

Look at your average
WWW query

HTTP
header

HTTP
header

HTTP
header

HTTP
header

TCP
header

TCP
header

TCP
header

IP
header

IP
header

Ethernet
header

Ethernet
trailer

14 20 20 192 4

Slide 24 Portions Copyright © 1996, Opus1, Process Software, TGV

Make sure you memorize
all of this encapsulation info

Destination
address

Source
address

Type
 field Data field CRC

Destination
address

Source
address

Length
field Data field CRC

Destination
address

Source
address

Length
 field DSAP SSAP CTRL Data field CRC

SNAP header

Destination
address

Source
address

Length
field Data field CRCFFFF

Destination
address

Source
address

Length
 field DSAP SSAP CTRL Data field CRCOUI

Ethernet V2.0

IEEE 802.3

IEEE 802.3 with IEEE 802.2

IEEE 802.3 SNAP

Novell proprietary

6 bytes 2 bytes Up to 1500 bytes 4 bytes

Up to 1496 bytes

6 bytes

6 bytes 6 bytes 4 bytes

4 bytes

2 bytes 4 bytes6 bytes 6 bytes 1 byte 1 byte *

4 bytes2 bytes6 bytes 6 bytes Up to 1500 bytes

6 bytes 6 bytes 2 bytes 1 byte 1 byte 3 bytes 2 bytes 1492 bytes

FDDI

 Token Ring

Destination
address

Source
address

Length
 field DSAP SSAP CTRL Data field

4 bytes6 bytes 6 bytes 2 bytes 1 byte 1 byte 4472 bytes

EtherType

Preamble SD FC FCS FSED

1 byte 1 byte

Destination
address

Source
address DSAP SSAP CTRL Data field CRC

4 bytes6 bytes 6 bytes 1 byte 1 byte 4472 (4 Mbps or 17800 (16 Mbps) bytes

RIFSD AC FC FS

Slide 25 Portions Copyright © 1996, Opus1, Process Software, TGV

Multiplexing and
Demultiplexing

Application
Process

Application
Process

Application
Process

TCP UDP

IP

Ethernet
interface

Ethernet
interface

IPX DECnet

Slide 26 Portions Copyright © 1996, Opus1, Process Software, TGV

Segmentation and
Reassembly

Application Data
Message

TCP

IP

TCP

IP

TCP Segments

IP Packets

Slide 27 Portions Copyright © 1996, Opus1, Process Software, TGV

Addressing identifies
entities in the network

Each layer in a TCP/IP stack has an address
made up of two parts

The address of everything below it
The address of itself

In some cases, lower-level addresses are
implied and do not have to be stated

For example, Ethernet MAC addresses are tied
directly to IP addresses, so they can be omited

Slide 28 Portions Copyright © 1996, Opus1, Process Software, TGV

Three addresses are
important: IP, Protocol, Port

Application-level
addresses

Transport-level
addresses

Network-level
addresses

Slide 29 Portions Copyright © 1996, Opus1, Process Software, TGV

IP addresses are 32-bit
integers

Application-level
addresses

Transport-level
addresses

Network-level
addresses

IP Address: 192.245.12.2

Slide 30 Portions Copyright © 1996, Opus1, Process Software, TGV

Transport addresses are
8-bit protocol numbers

Application-level
addresses

Transport-level
addresses

Network-level
addresses

Protocol
Number:

TCP = 6

UDP=17

Slide 31 Portions Copyright © 1996, Opus1, Process Software, TGV

Port Numbers are
16-bit integers

Application-level
addresses

Transport-level
addresses

Network-level
addresses

Port
Number:

SMTP = 25

Slide 32 Portions Copyright © 1996, Opus1, Process Software, TGV

The triplet (IP,Proto,Port)
identifies a process

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

version
header
length total length (in 8-bit bytes)

protocol id

source IP address

destination IP address

IP number
(network address)

Protocol number
(transport address)

Port number
(application address)

Slide 33 Portions Copyright © 1996, Opus1, Process Software, TGV

Two triplets identify a
connection

Now we have a socket!
(sometimes called a “socket pair”)

Application number 1117

on protocol number 6 (TCP)

at IP address 192.245.12.2

Application number 25

on protocol number 6 (TCP)

at IP address 128.196.128.233

Slide 34 Portions Copyright © 1996, Opus1, Process Software, TGV

A socket maps one
application to another

Application
Process

Application
Process

TCP UDP

IP

Ethernet
interface

Application
Process

TCP UDP

IP

Ethernet
interface

1117 25

6 6

192.245.12.2 128.196.128.233

Slide 35 Portions Copyright © 1996, Opus1, Process Software, TGV

Addresses are assigned by
different entities

IP addresses are assigned by the InterNIC
and are managed by the local network
manager
Protocol numbers are assigned by the IANA
(Internet Assigned Number Authority) and
are fixed across the Internet (RFC 1700)
Application port numbers come from two
sources

Servers are assigned by IANA (RFC 1700)
Clients are handled by the network kernel

Slide 36 Portions Copyright © 1996, Opus1, Process Software, TGV

IP Addressing

IP is the Internet Protocol, currently version
4
IPNG is the Next Generation (also known as
IPv6)
IP is defined by RFC-791
IP uses four octet (8-bit byte) addresses
IP takes care of getting packets to
destination

Slide 37 Portions Copyright © 1996, Opus1, Process Software, TGV

Client and Server Port
Numbers are coordinated

NORMALLY, Server port numbers are low
numbers in the range 1-1023

Defined in RFC 1700
NORMALLY, Client port numbers are high
numbers starting at 1024

These are called “ephemeral ports”

Slide 38 Portions Copyright © 1996, Opus1, Process Software, TGV

You only pick server ports

A server running on a “well-known port” lets
the operating system know what port it
wants to listen on
A client simply lets the operating system pick
a new port (ephemeral) that isn’t already in
use

Slide 39 Portions Copyright © 1996, Opus1, Process Software, TGV

Well-Known-Servers

Public services (e.g. and email server) are
assigned a particular number by IANA
These numbers are stored in the Internet
Assigned Numbers RFC (changing number,
latest is 1797)
These are called Well-Known-Servers
Examples of these include TELNET (23),
SMTP (25), FINGER (79), HTTP (80),
RLOGIN (512) and others

Important Terms
Key Concepts

TCP/IP networks are layered
TCP/IP uses a client/server paradigm
Addressing triples (IP, protocol, port) identify
applications in TCP/IP
A pair of triples beats a full house

Client/Server in TCP/IPClient/Server in TCP/IP

Slide 42 Portions Copyright © 1996, Opus1, Process Software, TGV

Client/Server in TCP/IP
Overview

What is the server process (INETD)?
What are ephemeral ports?
How can you have multiple connections?
How are processes identified?
What is Connection-oriented? Connection-
less?

Slide 43 Portions Copyright © 1996, Opus1, Process Software, TGV

Making the initial
connection to a server

When a connection enters a TCP/IP system,
someone has to handle it

Either a running daemon is waiting (your
application)
or a running daemon is waiting (InetD)

Trade off efficiency for performance
Choose whichever model you want based on
individual application characteristics
Seldom used? Inetd
Constantly used? True Daemon

Slide 44 Portions Copyright © 1996, Opus1, Process Software, TGV

Your application can wait
for an incoming connection

This is called the “Daemon” (or Demon)
approach

Your
Application

Network Kernel

If anything should
come in for Port 25 on
TCP, give it to me. I will
be waiting right here.

OK.

Slide 45 Portions Copyright © 1996, Opus1, Process Software, TGV

Or you can have the InetD
do it for you

Your
Application

Network Kernel

Here’s an
incoming call.

Port 25? I will start a
new process running
Your Application and
hand it this incoming call.

InetD

In Multinet, InetD is known as the Master Server
In TCPware, InetD is part of NETCP
In UCX, InetD is the Auxilliary Server

Slide 46 Portions Copyright © 1996, Opus1, Process Software, TGV

Servers low, Clients high
Servers:

ports
1-1023

Clients:

“ephemeral
ports”
above
1023

Slide 47 Portions Copyright © 1996, Opus1, Process Software, TGV

A Server may connect to
multiple clients

Each connection is a pair of triples (IP,
protocol, port)
The server side may remain the same
across multiple clients
Of course, the server programmer has to
keep it all straight

Slide 48 Portions Copyright © 1996, Opus1, Process Software, TGV

Socket-pairs leave no
ambiguity between 2 clients

Client

TCP

IP

Ethernet
interface

SERVER

TCP

IP

Ethernet
interface

1117 25

6 6

192.245.12.2 128.196.128.233

Client

TCP

IP

Ethernet
interface

5555

6

195.240.3.1

Slide 49 Portions Copyright © 1996, Opus1, Process Software, TGV

Applications are known by
their port numbers

A process is identified by its 16-bit port
number
If a server uses both TCP and UDP, it will
often use the same port number for both
protocols

Protocol number means no ambiguity
The concept of low-numbered ports as
“privileged” disappeared with PCs

Don’t base your security on port numbers!
Some services use a meet-me approach

Slide 50 Portions Copyright © 1996, Opus1, Process Software, TGV

TCP/IP supports CL and
CO at transport layer

CO = Connection Oriented
TCP
“Stream”

CL = Connectionless
UDP
“Datagram”

CL can be provided by pure IP
Unusual
“Raw”

Slide 51 Portions Copyright © 1996, Opus1, Process Software, TGV

Connection oriented is like
a phone call

Connection oriented data communications
arrived before connectionless

Used primarily over noisy serial lines in original
intention.

not necessarily an issue with TCP
Two stations must establish a connection
before data is transmitted.
Connection is strictly maintained using
sequence numbers, acknowledgments, retries
and so on.

Slide 52 Portions Copyright © 1996, Opus1, Process Software, TGV

Connect, Transfer,
Disconnect

Connect Request

Connect Confirm

Data

Disconnect Request

Disconnect Confirm
Note: This is almost
like how it’s done in

TCP. Take the
internals course for

more info.

Slide 53 Portions Copyright © 1996, Opus1, Process Software, TGV

Connectionless is like a
postcard

Connectionless allows data to be transmitted
without a pre-established connection
between two stations.

This type of service flourished with the
proliferation of LANs.

LANs tend to have a very low error rate and a
connection need not be established to ensure the
integrity of the data.

This type of service does not provide error
recovery, flow or congestion control.

upper layer network protocols can accomplish this.
It requires less overhead and is implicitly faster.

Slide 54 Portions Copyright © 1996, Opus1, Process Software, TGV

Nike style data
communications

Data

Note: This is exactly
like how it’s done in

UDP. Take the
internals course for

more info.

Data

Data

Data

Slide 55 Portions Copyright © 1996, Opus1, Process Software, TGV

Client/Server in TCP/IP
Key Concepts

Servers are handled in one of two ways:
resident daemons or InetD
Server ports are low-numbers; client ports
are high-numbered ephemeral ports
A server can talk to many clients if the
programmer can keep them straight
TCP is CO; UDP is CL

