TCP/IP Addressing and Subnetting

an excerpt from:

A Technical Introduction to TCP/IP Internals

Presentation Copyright © 1995 TGV Software, Inc.

IP Addressing Roadmap

Format of IP Addresses
Traditional Class Networks
Network Masks
Subnetting
Supernetting
Special IP Addresses

IP Addresses

- All IP interfaces have IP addresses
- Each IP interface must have its own unique IP address
- Internally, this is represented as a 32-bit number of 0's and 1's
- IP addresses consist of two parts
 - network identification
 - host identification

We care because that's how we do routing

- IP routing is based on a simple "next hop" model:
 - Is the destination address ON my network or NOT?
 - If it is ON my network, send it directly
 - If it is NOT on my network, send it via a router
- To match network numbers, you must know what part is network and what part is host

There are several ways the IP address can be represented

- 32 bit number of 0's and 1's
 - 10100001 00101100 11000000 00000001

four decimal numbers separated by dots

- 161.44.192.1
- hexadecimal representation
 - 9D.2C.BC.01

Traditional Network Class Addresses

The first dotted quad value identifies the network class and how much of the IP address is the network identifier

- Class A Networks (first number between 1-127)
- Class B Networks (first number between 128-191)
- Class C Networks (first number between 192-223)
- There are also some special IP addresses which are defined in a different way
 - Class D Networks (first number between 224-239)
 - for IP multicast
 - Class E Networks (first number between 240-255)
 - for Landmark routing

Slide 8

Assigning Network Numbers

- Network numbers imply some space for hosts
 - Network numbers are assigned by your Internet Service Provider, who got them from the InterNIC (Network Information Center)
- Network numbers are written as a full 32-bit quantity (and an implied network mask)
- Networks end with some number of contiguous zero-bits on the right
- These zero-bits are where customers can use one bits for host addresses

Network Mask

- Identifies how many bits of the IP address the host may use
- The mask contains a 1 bit for every bit in the "network portion" of the address
- The mask contains a 0 bit for every bit in the "host portion" of the address
- Every host on a network must have the same network mask
- May also be called the Subnet Mask

Slide 13

Prefixes and Network Masks almost the same

- A network mask can represent an arbitrary set of bits:
 - 11111111 1110111 10101010 0000000
- A prefix can only represent contiguous ones bits:
 - 11111111 1111111 1111100 00000000
 - is the same as /22
- Subnet numbers SHOULD be contiguous..." (RFC 1812)

Translating between the two is easy

255.255.0.0	/16
255.255.128.0	/17
255.255.192.0	/18
255.255.224.0	/19
255.255.240.0	/20
255.255.248.0	/21
255.255.252.0	/22
255.255.254.0	/23
255.255.255.0	/24
255.255.255.128	/25
255.255.255.192	/26
255.255.255.224	/27
255.255.255.240	/28
255.255.255.248	/29
255.255.255.252	/30

128 64 32 16 8 4 2 1	
----------------------	--

1000000 = 128 = 128 1100000 = 192 = 128+64 11100000 = 224 = 128+64+32 1110000 = 240 = 128+64+32+16 1111000 = 248 = 128+64+32+16+8 1111100 = 252 = 128+64+32+16+8+4 1111110 = 254 = 128+64+32+16+8+4+2 11111110 = 255 = 128+64+32+16+8+4+2+1

Slide 15

Simple Network Example

Network address 192.195.240.0
 Network mask 255.255.255.0 or /24
 Host numbers 192.195.240.1 - 192.195.240.254
 First 24 bits identify the network
 Last 8 bits are for the host EXCEPT:
 Can't use all 0's (.0, assigned network)
 Can't use all 1's (.255, broadcast address)

Network Mask Usage

Host address: 192.195.240.4
Network Mask: 255.255.255.0 (/24)
Logical AND yields network 192.195.240.0
Destination host: 192.195.241.4
Logical AND yields network 192.195.241.0
Since the network 24 bits of the local host and destination host are unequal, the destination host is not on local net

IP Subnetworks

- Allows the "host" part of IP address to be further split
- Arbitrary bit position divides subnet and host
- Transparent outside of local network
- Must be agreed upon by all hosts in local network
- Allows additional layer of hierarchy to be built into a single IP network number
- Helps reduce address space waste

Originally used to break up Class B networks

- Organization would get a Class B network number (e.g., 128.196.0.0)
- Organization would start to buy routers
- Organization would want to break up that network into smaller pieces

"Subnet a B into Cs"

Original network number was 128.196.0.0
Original network mask was 255.255.0.0

Subnet with network mask 255.255.255.0
 This gives 256 networks of 254 hosts each
 128.196.0.1 through 128.196.0.254
 128.196.1.1 through 128.196.1.254
 128.196.255.1 through 128.196.255.254

That's where we used to end the class...

- You can't get a class B network number any more
- You probably get a block of class C network numbers which you need to break up yourself
- Address "space" is scare
 - Class B addresses are very scarce
 - Class C addresses are common, but routing table space is very scarce

Major ISPs are filtering "inefficient" blocks

Subnets and Supernets

- In the old Internet the default network mask was based on the first few bits of the first octet
- In the new Internet network masks are defined for all networks
 - a network subdivided into smaller subnets uses subnet masks
 - a network comprised of a consecutive range of network numbers uses supernet masks (CIDR)

Example of Subnetting

Physical topology of two physical LANs (ethernets) separated by a router

- The router (host) must know which interface to select
 - Each interface must be on a different IP network

Subnet Example

We could assign each its own, like 192.195.240.0 and 192.195.241.0 wastes lots of IP addresses if < 510 hosts</p> We can take our /24, and split it into /25 networks: 192.195.240.[0][7 host bits] 192.195.240.1 - 192.195.240.126 192.195.240.[1][7 host bits] 192.195.240.128 - 192.195.240.255 This gives us two subnetworks of 2**7 hosts each (minus 2 per subnet, of course)

Let's do Two Subnets anyway

If we assign two bits:
192.195.240.[00][6 host bits]
191.195.240.[01][6 host bits]
192.195.240.[10][6 host bits]
192.195.240.[11][6 host bits]

The Subnet Mask

The subnet mask in this case must represent the part the IP kernel needs to compare when checking for whether this is on the local network

- 255.255.255.192 includes those extra two bits at the end
 - 192 = 11000000

 - prefix = /26 (/24 + 2 bits)

Subnetting 192.195.240.0

First three octets are: 192.195.240.xxx

net num	net num in binary	num in decimal	b-cast address	host range
0	00 000000	.0	.63	.1 through .62
1	01 000000	.64	.127	.65 through .126
2	10 000000	.128	.191	.129 through .190
3	11 000000	.192	.255	.193 through .254

Network Mask = /26 = 255.255.255.192

Find the lowest power of 2 that fits

2**8	256 (n	ot very useful)
2**7	128	
2**6	64	
2**5	32	"32 is too many, and 8 is too
2**4	16	few, so 16 must be just right"
2**3	8	- little Red Riding Hood
2**2	4	
2**1	2	
2**0	1 (n	ot very useful)

Four additional bits for network number works

The original network had a 24 bit netmask
/24 prefix

*255.255.255.0 mask

Subnet as a /28 (/24 + /4)

♦ /28 prefix

11111111 1111111 1111111 11110000

♦ 255.255.255.240 mask

This will leave us 16 host addresses per subnet, minus one for the network address and one for the broadcast address = 14

Example of subnetting a network to a /27

Original network number: 192.245.12.0/24

First three octets of everything: 192.245.12.xxx

net num	net num in binary	num in decimal	b-cast address	host range
0	000 00000	.0	.31	.1 to .30
1	001 00000			
2	010 00000			
3	011 00000			
4				
5				
6				
7	111 00000	.224	.255	.225 to .254

A little binary-to-decimal conversion table

	1	1	1	1	1	1	1
0000 0000 0	0010 0000 32	0 100 0000 64	d110 0000 96	1000 0000 128	1010 0000 160	1100 0000 192	1110 0000 224
0000 0001 1	0010 0001 33	0 100 0001 65	d110 0001 97	1000 0001 129	1010 0001 161	1100 0001 193	1110 0001 225
0000 0010 2	0010 0010 34	0 100 0010 66	d110 0010 98	1000 0010 130	1010 0010 162	1100 0010 194	1110 0010 226
0000 0011 3	0010 0011 35	0 100 0011 67	d110 0011 99	1000 0011 131	1010 0011 163	1100 0011 195	1110 0 0 11 227
0000 0100 4	0010 0100 36	0 100 0100 68	d110 0100 100	1000 0100 132	1010 0100 164	1100 0100 196	1110 0100 228
0000 0101 5	0010 0101 37	0 100 0101 69	d110 0101 101	1000 0101 133	1010 0101 165	1100 0101 197	1110 0101 229
0000 0110 6	0010 0110 38	0 100 0110 70	0 110 0110 102	10 0 0 0110 134	1010 0110 166	1100 0110 198	1110 0110 230
0000 0111 7	0010 0111 39	0 100 0111 71	d 110 0111 103	10 0 0 0111 135	1010 0111 167	1100 0111 199	1110 0111 231
0000 1000 8	0010 1000 40	0100 1000 72	d110 1000 104	10 0 0 1000 136	1010 1000 168	1100 1000 200	1110 1000 232
0000 1001 9	0010 1001 41	0100 1001 73	d 110 1001 105	10 0 0 1001 137	1010 1001 169	1100 1001 201	1110 1001 233
0000 1010 10	0010 1010 42	0 100 1010 74	d 110 1010 106	10 0 0 1010 138	1010 1010 170	1100 1010 202	1110 1010 234
0000 1011 11	0010 1011 43	0 100 1011 75	d 110 1011 107	10 0 0 1011 139	1010 1011 171	1100 1011 203	1110 1011 235
0000 1100 12	0010 1100 44	0 100 1100 76	d 110 1100 108	10 0 0 1100 140	1010 1100 172	1100 1100 204	1110 1 1 00 236
0000 1101 13	0010 1101 45	0100 1101 77	0110 1101 109	1000 1101 141	1010 1101 173	1100 1101 205	1110 1101 237
0000 1110 14	0010 1110 46	0100 1110 78	d 110 1110 110	1000 1110 142	1010 1110 174	1100 1110 206	1110 1110 238
0000 1111 15	0010 1111 47	0100 1111 79	0110 1111 111	1000 1111 143	1010 1111 175	1100 1111 207	1110 1111 239
0001 0000 16	0.011 0.000 40	1.01.0000.00	111 0000 110	101 0000 144	10110000 156	1101 0000 000	1111 0000 040
0001 0000 16	0011 0000 48	0101 0000 80	0111 0000 112	1001 0000 144	1011 0000 176	1101 0000 208	1111 0000 240
0001 0001 17	0011 0001 49	0101 0001 81	0111 0001 113	1001 0001 145	1011 0001 177	1101 0001 209	1111 0001 241
0001 0010 18	0011 0010 50	0101 0010 82	0111 0010 114	1001 0010 146	1011 0010 178	1101 0010 210	1111 0010 242
0001 0011 19	0011 0011 51	0 101 0011 83	0111 0011 115	1001 0011 147	1011 0011 179	1101 0011 211	1111 0011 243
0001 0100 20 0001 0101 21	0011 0100 52 0011 0101 53	0101 0100 84 0101 0101 85	0111 0100 116 0111 0101 117	10 0 1 0100 148 10 0 1 0101 149	1011 0100 180 1011 0101 181	1101 0100 212 1101 0101 213	1111 0100 244 1111 0101 245
0001 0101 21	0011 0101 53	0101 0101 85	0111 0101 117	1001 0101 149	1011 0110 181	1101 0101 213	1111 0101 245 1111 0110 246
0001 0110 22	0011 0110 54	0101 0110 88 0101 0111 87	0111 0110 118		1011 0111 183	1101 0111 215	1111 0111 247
0001 1000 24	0011 1000 56	0101 1000 88	0111 1000 120	1001 1000 152	1011 1000 184	1101 1000 216	1111 1000 248
0001 1000 24	0011 1000 50	0101 1000 88	0111 1000 120	1001 1000 152	1011 1001 185	1101 1001 217	1111 1001 249
0001 1001 25	0011 1010 58	0101 1010 90	0111 1010 122	1001 1010 154	1011 1010 186	1101 1010 218	1111 1010 250
0001 1010 20	0011 1011 59	0101 1011 91	0111 1011 123	1001 1011 155	1011 1011 187	1101 1011 219	1111 1011 251
0001 1100 28	0011 1011 59	0101 1100 92	0111 1100 124	1001 1100 156	1011 1100 188	1101 1100 220	1111 1100 252
0001 1101 29	0011 1101 61	0101 1101 93	0111 1101 125	1001 1101 157	1011 1101 189	1101 1101 221	1111 1101 253
0001 1110 30	0011 1110 62	0101 1110 94	0111 1110 126	1001 1110 158	1011 1110 190	1101 1110 222	1111 1110 254
0001 1111 31	0011 1111 63	0101 1111 95	0111 1111 127	1001 1111 159	1011 1111 191	1101 1111 223	1111 1111 255

Example of subnetting a network to a /27

Original network number: 192.245.12.0/24

First three octets of everything: 192.245.12.xxx

net num	net num in binary	num in decimal	b-cast address	host range
0	000 00000	.0	.31	.1 to .30
1	001 00000	.32	.63	.33 to .62
2	010 00000	.64	.95	.65 to .94
3	011 00000	.96	.127	.97 to .126
4	100 00000	.128	.159	.129 to .158
5	101 00000	.160	.191	.161 to .190
6	110 00000	.192	.223	.193 to .222
7	111 00000	.224	.255	.225 to .254

Subnet Mask Summary

A network can be split into multiple smaller logical networks Network mask or prefix indicates which bits to compare when making routing decisions 255.255.255.0 is the same as /24 Host part: All 1s and all 0s cannot be used All host bits ones are broadcast address All host bits zero are network address Network part: All 0s can be a problem

With non-RFC 1812 compliant routers

Supernets

Supernetting takes multiple logical networks and makes one new logical network

Combine multiple Class-C networks for one physical network

More than 256 hosts on a cable

Supernetting makes the network mask less specific than the default mask

	Supernet Example
 Assigned network numbers of 204.17.32.0 and 204.17.33.0 A supernet mask of 255.255.254.0 would address both nets on the same physical wire 	
204.17.33.0 = 110011	00.00010001.0010000 00.00010001.0010000 11.11111111

Special IP Addresses

- A number of IP addresses are considered "special" by the RFCs and most implementations
- These are mostly for broadcast and loopback purposes
- We'll use the notation { xxx, yyy } to indicate the network and host part
 - xxx = network part
 - yyy = host part

{ 0, 0 } and { 0, <host> }

{0,0} means "this host, on this network"
Written also as 0.0.0.0

- Never used except in testing or booting
 BOOTP uses 0.0.0.0 to indicate "me"
- {0,<host>} means "this host, on this network" as well.

Reserved

but I've never seen it used

{ -1 , -1 } and
{ <this net> , -1 }

- {-1, -1} is the "everywhere" broadcast address
- Usually written as 255.255.255.255
- Does not go outside of your local network
- {<this net>, -1} is the broadcast to all hosts in your local net
- Very commonly used
 - For example, 192.245.12.0/24 broadcast is 192.245.12.255

{ 127 , <anything> }

Any address with the first octet 127

- Typically used as 127.0.0.1
- A Class A network number which is reserved for loopback purposes
- You may never use Net 127, even if you want to

Special Address Summary

0.0.0.0 means "me"

network.0 means "this network"

- network.255 means "broadcast"
- 255.255.255.255 means "broadcast everywhere"
- 127.0.0.1 means "loopback"
 - (actually: 127.anything)

IP Addressing Key Concepts

- IP Addresses are 32 bit numbers represented as a "dotted quad"
- Network numbers are assigned by the Internic or Internet access provider
- Host numbers are assigned by the network manager
- Network masks identify which part of the IP address is the network portion

TCP/IP Addressing and Subnetting

Mike Sullenberger Cisco Systems, Inc. mls@cisco.com +1 800 553 NETS