TCP/IP Addressing and Subnetting

an excerpt from:

A Technical Introduction to TCP/IP Internals

IP Addressing Roadmap

* Format of IP Addresses
* Traditional Class Networks
* Network Masks
* Subnetting
* Supernetting
* Special IP Addresses

IP Addresses

* All IP interfaces have IP addresses
* Each IP interface must have its own unique IP address
* Internally, this is represented as a 32-bit number of 0's and 1's
* IP addresses consist of two parts
* network identification
\%host identification

徉
 Breaking it up into network number and host is key

Network Part

2-31 bits

Host Part

We care because that's how we do routing

*IP routing is based on a simple "next hop" model:
$\%$ Is the destination address ON my network or NOT?

- If it is ON my network, send it directly
- If it is NOT on my network, send it via a router
*To match network numbers, you must know what part is network and what part is host

Representing IP Addresses

* There are several ways the IP address can be represented
* 32 bit number of 0's and 1's
- 10100001001011001100000000000001
* four decimal numbers separated by dots
- 161.44.192.1
\% hexadecimal representation
- 9D.2C.BC. 01

啹

Traditional Network Class Addresses

* The first dotted quad value identifies the network class and how much of the IP address is the network identifier
- Class A Networks (first number between 1-127)
- Class B Networks (first number between 128-191)
- Class C Networks (first number between 192-223) There are also some special IP addresses which are defined in a different way
- Class D Networks (first number between 224-239)
- for IP multicast
- Class E Networks (first number between 240-255)
- for Landmark routing

Fry This is due to a clever hack by the IP authors

Class A Address
Network = 8 bits
Host = 24 bits

Class B Address
Network = 16 bits
Host = 16 bits

Class C Address
Network $=24$ bits
Host $=8$ bits

Assigning Network Numbers

* Network numbers imply some space for hosts
* Network numbers are assigned by your Internet Service Provider, who got them from the InterNIC (Network Information Center)
* Network numbers are written as a full 32-bit quantity (and an implied network mask)
* Networks end with some number of contiguous zero-bits on the right
* These zero-bits are where customers can use one bits for host addresses

塀

You can also use RFC 1597 addresses

*For "local" use, although your provider may reserve some of them
10.0.0.0-10.255.255.255 (10/8)
-172.16.0.0-172.31.255.255 (172.16/12)

* 192.168.0.0-192.168.255.255 (192.168/16)
* (see also RFC 1918 and RFC 1627)

Network Mask

* Identifies how many bits of the IP address the host may use
* The mask contains a 1 bit for every bit in the "network portion" of the address
* The mask contains a 0 bit for every bit in the "host portion" of the address
* Every host on a network must have the same network mask
* May also be called the Subnet Mask

Default Network Masks

Network Masks are now shown with slash notation

* Class A network number
* 8 bits of network, 24 bits of host
* 10.0.0.0/8
* Class B network number
* 16 bits of network, 16 bits of host
128.196.0.0/16
* Class C network number
* 24 bits of network, 8 bits of host
* 192.245.12.0/24

Prefixes and Network Masks almost the same

* A network mask can represent an arbitrary set of bits:
*11111111 111101111010101000000000
* A prefix can only represent contiguous ones bits:
-11111111 111111111111110000000000
*is the same as $/ 22$
*"Subnet numbers SHOULD be contiguous..." (RFC 1812)

Translating between the two is easy

255.255 .0 .0	$/ 16$
255.255 .128 .0	$/ 17$
255.255 .192 .0	$/ 18$
255.255 .224 .0	$/ 19$
255.255 .240 .0	$/ 20$
255.255 .248 .0	$/ 21$
255.255 .252 .0	$/ 22$
255.255 .254 .0	$/ 23$
255.255 .255 .0	$/ 24$
255.255 .255 .128	$/ 25$
255.255 .255 .192	$/ 26$
255.255 .255 .224	$/ 27$
255.255 .255 .240	$/ 28$
255.255 .255 .248	$/ 29$
255.255 .255 .252	$/ 30$

Simple Network Example

* Network address
* Network mask 192.195.240.0 255.255.255.0 or /24
* Host numbers
*192.195.240.1-192.195.240.254
* First 24 bits identify the network
* Last 8 bits are for the host EXCEPT:
*Can't use all 0's (.0, assigned network)
©Can't use all 1's (.255, broadcast address)

Two addresses in every network are special

* Host part all ones (usually "255-ish")
*This is defined as the broadcast address, and means "all systems on the current network"
* Host part all zeros (usually "0-ish")
*This is defined as the network number and cannot be used
- Example:
*192.245.12.0/24 is a network with 8 bits
© 192.245.12.255 is the broadcast address
$\% 192.245 .12 .0$ is the network number

Slide 17

* 192.245.12.1 through 192.245.12.254 are hosts

Network Mask Usage

* Host address: 192.195.240.4
* Network Mask: 255.255.255.0 (/24)
*Logical AND yields network 192.195.240.0
* Destination host: 192.195.241.4
*Logical AND yields network 192.195.241.0
*Since the network 24 bits of the local host and destination host are unequal, the destination host is not on local net

IP Subnetworks

* Allows the "host" part of IP address to be further split
* Arbitrary bit position divides subnet and host
* Transparent outside of local network
* Must be agreed upon by all hosts in local network
* Allows additional layer of hierarchy to be built into a single IP network number
* Helps reduce address space waste

薪
 Originally used to break up Class B networks

* Organization would get a Class B network number (e.g., 128.196.0.0)
* Organization would start to buy routers
* Organization would want to break up that network into smaller pieces

"Subnet a B into Cs"

* Original network number was 128.196.0.0
* Original network mask was 255.255.0.0
* Subnet with network mask 255.255.255.0
* This gives 256 networks of 254 hosts each
* 128.196.0.1 through 128.196.0.254
* 128.196.1.1 through 128.196.1.254
* 128.196.255.1 through 128.196.255.254

塀
 Finishing "Subnet a B into Cs"

* The world (everyone outside) knows of the network as 128.196.0.0 (no subnet)
* Everyone inside must agree that the network mask is 255.255.255.0

That's where we used to end the class...

* You can't get a class B network number any more
* You probably get a block of class C network numbers which you need to break up yourself
* Address "space" is scare
*Class B addresses are very scarce
Class C addresses are common, but routing table space is very scarce
*Major ISPs are filtering "inefficient" blocks

Subnets and Supernets

\& In the old Internet the default network mask was based on the first few bits of the first octet
$\%$ In the new Internet network masks are defined for all networks

* network subdivided into smaller subnets uses subnet masks
$\%$ a network comprised of a consecutive range of network numbers uses supernet masks (CIDR)

Example of Subnetting

*Physical topology of two physical LANs (ethernets) separated by a router
:The router (host) must know which interface to select

* Each interface must be on a different IP network

Subnet Example

* We could assign each its own, like 192.195.240.0 and 192.195.241.0
* wastes lots of IP addresses if < 510 hosts
* We can take our /24, and split it into /25 networks:
* 192.195.240.[0][7 host bits]
- 192.195.240.1-192.195.240.126
* 192.195.240.[1][7 host bits]
- 192.195.240.128-192.195.240.255
* This gives us two subnetworks of $2^{* *} 7$ hosts each (minus 2 per subnet, of course)

However

* We can'f use a subnetwork of all 0 bits
* sore routers can't hardle that
can't distinguish betwe - n route to poth nets and route to subnet 0
The refore we can' use a one-bit network mask, su h as in the evious exam ple, because it's eith er all zerses or all ones

RFC 1812 changed this! Get your router manufacturer to fix their software!

Let's do Two Subnets anyway

* If we assign two bits:
* 192.195.240.[00][6 host bits]
* 191.195.240.[01][6 host bits]
192.195.240.[10][6 host bits]
192.195.240.[11][6 host bits]

The Subnet Mask

* The subnet mask in this case must represent the part the IP kernel needs to compare when checking for whether this is on the local network
255.255.255.192 includes those extra two bits at the end
- $192=11000000$
- mask = 11111111.11111111 .11111111 .11000000
- prefix $=/ 26$ (/24 + 2 bits)

Subnetting 192.195.240.0

First three octets are: 192.195.240.xxx

net num	net num in binary	num in decimal	b-cast address	host range
0	00000000	.0	.63	.1 through .62
1	01000000	.64	.127	.65 through .126
2	10000000	.128	.191	.129 through .190
3	11000000	.192	.255	.193 through .254

Network Mask $=/ 26=255.255 .255 .192$

Further Subnetting

* Let's say we have need for multiple physical networks, like 10 or so, each of which will have a few systems on it

Tp변 Find the lowest power of 2 that fits

2** 256 (not very useful)
2** 128
2** 64
2**5 32
2** 16
2**3 8
2**2 4
2** 2
$2^{* *} 0 \quad 1 \quad$ (not very useful)

Four additional bits for network number works

* The original network had a 24 bit netmask - /24 prefix
255.255.255.0 mask
* Subnet as a /28 (/24 + /4)
*/28 prefix
*11111111 111111111111111111110000
255.255.255.240 mask
* This will leave us 16 host addresses per subnet, minus one for the network address and one for the broadcast address = 14

䊈

Example of subnetting a network to a /27

Original network number: 192.245.12.0/24
First three octets of everything: 192.245.12.xxx

net num	net num in binary	num in decimal	b-cast address	host range
0	00000000	.0	.31	.1 to .30
1	00100000			
2	01000000			
3	01100000			
4				
5				
6				
7	11100000	.224	.255	.225 to .254

A little binary-to-decimal conversion table

0000	0000	0
0000	0001	1
0000	0010	2
0000	0011	3
0000	0100	4
0000	0101	5
0000	0110	6
0000	0111	7
0000	1000	8
0000	1001	9
0000	1010	10
0000	1011	11
0000	1100	12
0000	1101	13
0000	1110	14
0000	1111	15
0001	0000	16
0001	0001	17
0001	0010	18
0001	0011	19
0001	0100	20
0001	0101	21
0001	0110	22
0001	0111	23
0001	1000	24
0001	1001	25
0001	1010	26
0001	1011	27
0001	1100	28
0001	1101	29
0001	1110	30
0001	1111	31

0010	0000	32
0010	0001	33
0010	0010	34
0010	0011	35
0010	0100	36
0010	0101	37
0010	0110	38
0010	0111	39
0010	1000	40
0010	1001	41
0010	1010	42
0010	1011	43
0010	1100	44
0010	1101	45
0010	1110	46
0010	1111	47
0011	0000	48
0011	0001	49
0011	0010	50
0011	0011	51
0011	0100	52
0011	0101	53
0011	0110	54
0011	0111	55
0011	1000	56
0011	1001	57
0011	1010	58
0011	1011	59
0011	1100	60
0011	1101	61
0011	1110	62
0011	1111	63

10		
10	0000	128
10	0001	129
10	0010	130
10	0011	131
10	0	0100
10	132	
10	0101	133
10	0110	134
10	0111	135
10	1000	136
10	1001	137
10	1010	138
10	1011	139
10	1100	140
10	1101	141
10	1110	142
10	1111	143
10		
10	0000	144
10	0001	145
10	1	0010
10	146	
10	0011	147
10	0100	148
10	1	0101

1010	0000	160
1010	0001	161
1010	0010	162
1010	0011	163
1010	0100	164
1010	0101	165
1010	0110	166
1010	0111	167
1010	1000	168
1010	1001	169
1010	1010	170
1010	1011	171
1010	1100	172
1010	1101	173
1010	1110	174
1010	1111	175
1011	0000	176
1011	0001	177
1011	0010	178
1011	0011	179
1011	0100	180
1011	0101	181
1011	0110	182
1011	0111	183
1011	1000	184
1011	1001	185
1011	1010	186
1011	1011	187
1011	1100	188
1011	1101	189
1011	1110	190
1011	1111	191
1		

1110	0	000	224
1110	0	01	225
1110	0	10	226
1110	0	11	227
1110	0	00	228
1110	0	01	229
1110	0	10	230
1110	0	11	231
1110	1	00	232
1110	1	01	233
1110	1	10	234
1110	1	11	235
1110	1	00	236
1110	1	01	237
1110	1	10	238
1110	1	11	239
1111	0	00	240
1111	0	01	241
1111	0	10	242
1111	0	11	243
1111	0	00	244
1111	0	01	245
1111	0	10	246
1111	0	11	247
1111	1	00	248
1111	1	01	249
1111	1	10	250
1111	1	11	251
1111	1	00	252
1111	1	01	253
1111	1	10	254
1111	1	11	255

Slide 35

拜

Example of subnetting a network to a /27

Original network number: 192.245.12.0/24
First three octets of everything: 192.245.12.xxx

net num	net num in binary	num in decimal	b-cast address	host range
0	$000 \quad 00000$.0	.31	.1 to .30
1	00100000	.32	.63	.33 to .62
2	01000000	.64	.95	.65 to .94
3	01100000	.96	.127	.97 to .126
4	10000000	.128	.159	.129 to .158
5	10100000	.160	.191	.161 to .190
6	11000000	.192	.223	.193 to .222
7	11100000	.224	.255	.225 to .254

Subnet Mask Summary

* A network can be split into multiple smaller logical networks
* Network mask or prefix indicates which bits to compare when making routing decisions
$\% 255.255 .255 .0$ is the same as $/ 24$
* Host part: All 1s and all 0s cannot be used
*All host bits ones are broadcast address
*All host bits zero are network address
*Network part: All Os can be a problem
*With non-RFC 1812 compliant routers

Supernets

* Supernetting takes multiple logical networks and makes one new logical network
* Combine multiple Class-C networks for one physical network
* More than 256 hosts on a cable
*Supernetting makes the network mask less specific than the default mask

Supernet Example

* Assigned network numbers of 204.17.32.0 and 204.17.33.0
* A supernet mask of 255.255 .254 .0 would address both nets on the same physical wire
$\begin{array}{ll}204.17 .32 .0 & =11001100.00010001 .00100000 .00000000 \\ 204.17 .33 .0 & =11001100.00010001 .00100001 .00000000 \\ 255.255 .254 .0 & =11111111.11111111 .11111110 .00000000\end{array}$

Special IP Addresses

* A number of IP addresses are considered "special" by the RFCs and most implementations
* These are mostly for broadcast and loopback purposes
*We'll use the notation \{ xxx, yyy \} to indicate the network and host part
*xxx = network part
*yyy = host part

$\{0,0\}$ and $\{0$, <host> \}

* $\{0,0\}$ means "this host, on this network"
*Written also as 0.0.0.0
*Never used except in testing or booting *BOOTP uses 0.0.0.0 to indicate "me"
* $\{0,<$ host $>\}$ means "this host, on this network" as well.
* Reserved
* but l've never seen it used

$$
\begin{array}{r}
\{-1,-1\} \text { and } \\
\{<\text { this net> },-1\}
\end{array}
$$

* $\{-1,-1\}$ is the "everywhere" broadcast address
* Usually written as 255.255.255.255
* Does not go outside of your local network
\& \{<this net>, -1$\}$ is the broadcast to all hosts in your local net
* Very commonly used
*For example, 192.245.12.0/24 broadcast is 192.245.12.255

\{ 127 , <anything> \}

* Any address with the first octet 127
* Typically used as 127.0.0.1
* A Class A network number which is reserved for loopback purposes
* You may never use Net 127, even if you want to

Special Address Summary

* 0.0.0.0 means "me"
* network. 0 means "this network"
* network. 255 means "broadcast"
* 255.255.255.255 means "broadcast everywhere"
* 127.0.0.1 means "loopback"
(actually: 127.anything)

IP Addressing Key Concepts

* IP Addresses are 32 bit numbers represented as a "dotted quad"
* Network numbers are assigned by the Internic or Internet access provider
* Host numbers are assigned by the network manager
* Network masks identify which part of the IP address is the network portion

TCP/IP References

*TCP/IP Illustrated, Volume 1, The Protocols, W. Richard Stevens, Addison-Wesley Publishing Company, 1994

* Interconnections: Bridges and Routers, Radia PerIman, Addison-Wesley Publishing Company, 1992
* The Simple Book, An Introduction to Internet Management, Marshall T. Rose, PTR Prentice-Hall, Inc, 1994

IP Addressing

Questions ?

TCP/IP Addressing and Subnetting

Mike Sullenberger Cisco Systems, Inc. mls@cisco.com +1800553 NETS

