

TCG

TCG Trusted Network Connect
TNC IF-IMC

Specification Version 1.2
Revision 8
5 February 2007
Published

Contact:

admin@trustedcomputinggroup.org

TCG TCG TCG TCG PUBLISHEDPUBLISHEDPUBLISHEDPUBLISHED
Copyright © TCG 2005-2007

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page ii of 74
 TCG PUBLISHED

Copyright
©
 2005-2007 Trusted Computing Group, Incorporated.

Disclaimer

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION
OR SAMPLE. Without limitation, TCG disclaims all liability, including liability for infringement of any
proprietary rights, relating to use of information in this specification and to the implementation of this
specification, and TCG disclaims all liability for cost of procurement of substitute goods or services, lost
profits, loss of use, loss of data or any incidental, consequential, direct, indirect, or special damages,
whether under contract, tort, warranty or otherwise, arising in any way out of use or reliance upon this
specification or any information herein.

No license, express or implied, by estoppel or otherwise, to any TCG or TCG member intellectual
property rights is granted herein.

Except that a license is hereby granted by TCG to copy and reproduce this specification for
internal use only.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification
licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page iii of 74
 TCG PUBLISHED

IWG TNC Document Roadmap

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page iv of 74
 TCG PUBLISHED

Acknowledgement

The TCG wishes to thank all those who contributed to this specification. This document builds on
considerable work done in the various working groups in the TCG.

Special thanks to the members of the TNC contributing to this document:

Aman Garg 3Com

Bipin Mistry 3Com

Mahalingam Mani Avaya

Mark Beadles (Editor of IF-IMV 1.0) Endforce, Inc.

Hidenobu Ito Fujitsu Limited

Sung Lee Fujitsu Limited

Kazuaki Nimura Fujitsu Limited

Boris Balacheff Hewlett-Packard

Paul Crandell Hewlett-Packard

Mauricio Sanchez Hewlett-Packard

Diana Arroyo (Editor) IBM

Lee Terrell IBM

Frank Yeh IBM

Stuart Bailey Infoblox

Tina Bird InfoExpress, Inc.

Ravi Sahita Intel Corporation

Ned Smith Intel Corporation

Barbara Nelson iPass

Chris Trytten iPass

Steve Hanna (Editor, TNC co-chair) Juniper Networks, Inc.

John Jerrim Lancope, Inc.

Gene Chang Meetinghouse Data Communications

Alex Romanyuk Meetinghouse Data Communications

John Vollbrecht Meetinghouse Data Communications

Sandilya Garimella Motorola

Joseph Tardo Nevis Networks

Pasi Eronen Nokia Corporation

Jeff Six National Security Agency

Meenakshi Kaushik Nortel Networks

Thomas Hardjono SignaCert, Inc.

Babak Salimi Sygate Technologies, Inc.

Bryan Kingsford Symantec

Paul Sangster (TNC co-chair) Symantec

Rod Murchison Vernier Networks

Michele Sommerstad Vernier Networks

Scott Cochrane Wave Systems

Greg Kazmierczak Wave Systems

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page v of 74
 TCG PUBLISHED

Table of Contents
1 Scope and Audience.. 8
2 Background .. 9

2.1 Purpose of IF-IMC.. 9
2.2 Summary of Changes since IF-IMC 1.1... 9
2.3 Supported Use Cases .. 9
2.4 Non-supported Use Cases... 9
2.5 Requirements... 9
2.6 Non-Requirements ... 11
2.7 Assumptions... 11
2.8 Keywords ... 11
2.9 Abstract API Naming Conventions... 12
2.10 Features Provided by IF-IMC... 12

2.10.1 Integrity Check Handshake ... 12
2.10.2 Connection Management .. 12
2.10.3 Remediation and Handshake Retry .. 13
2.10.4 Message Delivery.. 13
2.10.5 Batches.. 14

3 IF-IMC Abstract API.. 16
3.1 Platform and Language Independence.. 16
3.2 Extensibility .. 16

3.2.1 API Version.. 16
3.2.2 Dynamic Function Binding... 16
3.2.3 Vendor IDs... 17
3.2.4 Vendor-Specific Functions .. 17

3.3 Threading and Reentrancy .. 17
3.4 Data Types... 18

3.4.1 Basic Types ... 18
3.4.2 Derived Types ... 18

3.5 Defined Constants.. 21
3.5.1 Result Code Values... 21
3.5.2 Version Numbers... 21
3.5.3 Network Connection ID Values ... 21
3.5.4 Network Connection State Values... 22
3.5.5 Handshake Retry Reason Values ... 22
3.5.6 Vendor ID Values .. 23
3.5.7 Message Subtype Values.. 23

3.6 Mandatory and Optional Functions .. 23
3.7 IMC Functions .. 23

3.7.1 TNC_IMC_Initialize (MANDATORY) ... 23
3.7.2 TNC_IMC_NotifyConnectionChange (OPTIONAL)... 24
3.7.3 TNC_IMC_BeginHandshake (MANDATORY) .. 25
3.7.4 TNC_IMC_ReceiveMessage (OPTIONAL) ... 26
3.7.5 TNC_IMC_BatchEnding (OPTIONAL) .. 27
3.7.6 TNC_IMC_Terminate (OPTIONAL)... 28

3.8 TNC Client Functions ... 29
3.8.1 TNC_TNCC_ReportMessageTypes (MANDATORY) ... 29
3.8.2 TNC_TNCC_SendMessage (MANDATORY) ... 30
3.8.3 TNC_TNCC_RequestHandshakeRetry (MANDATORY) .. 31

4 Platform Bindings .. 33
4.1 Microsoft Windows DLL Platform Binding.. 33

4.1.1 Finding, Loading, and Unloading IMCs ... 33
4.1.2 Dynamic Function Binding... 34
4.1.3 Threading .. 34
4.1.4 Platform-Specific Bindings for Basic Types .. 34

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page vi of 74
 TCG PUBLISHED

4.1.5 Platform-Specific Bindings for Derived Types... 34
4.1.6 Additional Platform-Specific Derived Types .. 34
4.1.7 Platform-Specific IMC Functions ... 36
4.1.8 Platform-Specific TNC Client Functions.. 36
4.1.9 Well-known Registry Key .. 37

4.2 UNIX/Linux Dynamic Linkage Platform Binding... 38
4.2.1 Finding, Loading, and Unloading IMCs ... 38
4.2.2 Dynamic Function Binding... 39
4.2.3 Format of /etc/tnc_config.. 39
4.2.4 Threading .. 40
4.2.5 Platform-Specific Bindings for Basic Types .. 41
4.2.6 Platform-Specific Bindings for Derived Types... 41
4.2.7 Additional Platform-Specific Derived Types .. 41
4.2.8 Platform-Specific IMC Functions ... 42
4.2.9 Platform-Specific TNC Client Functions.. 43

4.3 Java Platform Binding .. 44
4.3.1 Object Orientation ... 44
4.3.2 Exception Handling ... 44
4.3.3 Limited Privileges .. 44
4.3.4 Finding, Loading, and Unloading IMCs ... 45
4.3.5 Dynamic Function Binding... 46
4.3.6 Format of the tnc_config file .. 46
4.3.7 Location of the tnc_config file.. 48
4.3.8 Threading .. 48
4.3.9 Platform-Specific Bindings for Basic Types .. 48
4.3.10 Platform-Specific Bindings for Derived Types... 48
4.3.11 Interface and Class Definitions.. 48

5 Security Considerations.. 58
5.1 Threat analysis... 58

5.1.1 Registration and Discovery based threats .. 58
5.1.2 Rogue IMC threats .. 58
5.1.3 Rogue TNCC threats ... 59
5.1.4 Man-in-the-Middle Threats .. 59
5.1.5 Tampering Threats on IMCs and TNCCs.. 59
5.1.6 Threats Beyond IF-IMC ... 59

5.2 Suggested remedies .. 59
6 C Header File .. 61
7 Use Case Walkthrough.. 66

7.1 Configuration.. 66
7.2 TNCS Startup... 66
7.3 TNCC Startup... 66
7.4 Network Connect.. 66
7.5 Handshake Retry After Remediation ... 68
7.6 Handshake Retry Initiated by TNCS .. 68
7.7 C Binding Sequence Diagrams.. 68

7.7.1 Sequence Diagram for Network Connect.. 68
7.7.2 Sequence Diagram for Handshake Retry After Remediation ... 70
7.7.3 Sequence Diagram for Handshake Retry Initiated by TNCS ..70
7.7.4 Sequence Diagram for Network Connect.. 70
7.7.5 Sequence Diagram for Handshake Retry After Remediation ... 72
7.7.6 Sequence Diagram for Handshake Retry Initiated by TNCS ..72

8 Implementing a Simple IMC .. 73
8.1 Decide on a Message Type and Format.. 73
8.2 TNC_IMC_Initialize .. 73
8.3 TNC_IMC_ProvideBindFunction.. 73

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page vii of 74
 TCG PUBLISHED

8.4 TNC_IMC_BeginHandshake.. 73
8.5 All Done!... 73

9 References.. 74
9.1 Normative References ... 74
9.2 Informative References .. 74

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 8 of 74
 TCG PUBLISHED

1 Scope and Audience
The Trusted Network Connect Work Group (TNC-WG) has defined an open solution architecture
that enables network operators to enforce policies regarding the security state of endpoints in
order to determine whether to grant access to a requested network infrastructure. This security
assessment of each endpoint is performed using a set of asserted integrity measurements
covering aspects of the operational environment of the endpoint. Part of the TNC architecture is
IF-IMC, a standard interface between Integrity Measurement Collectors and the TNC Client. This
document defines and specifies IF-IMC.

Architects, designers, developers and technologists who wish to implement, use, or understand
IF-IMC should read this document carefully. Before reading this document any further, the reader
should review and understand the TNC architecture as described in [1].

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 9 of 74
 TCG PUBLISHED

2 Background

2.1 Purpose of IF-IMC
This document describes and specifies IF-IMC, a critical interface in the Trusted Computing
Group’s Trusted Network Connect (TNC) architecture. IF-IMC is the interface between Integrity
Measurement Collectors (IMCs) and a TNC Client (TNCC). It is closely related to IF-IMV [4], the
interface between Integrity Measurement Verifiers (IMVs) and a TNC Server (TNCS).

IF-IMC is primarily used by the TNC Client to gather the security state in the form of integrity
measurements from IMCs so they can be communicated to Integrity Measurement Verifiers
(IMVs) and to enable message exchanges between the IMCs and the IMVs. These message
exchanges occur within Integrity Check Handshakes, each of which is an example of a TCG
attestation protocol in the context of the TNC architecture. IF-IMC also allows IMCs to coordinate
with the TNC Client as needed. A more detailed description of the features provided by the IF-
IMC API is provided in section 2.9.

2.2 Summary of Changes since IF-IMC 1.1
The following changes have been made to IF-IMC since the last version (IF-IMC 1.1):

• Documented use cases

• Added Java Platform Binding

• Removed note saying that Linux/UNIX Binding is preliminary

2.3 Supported Use Cases
Use cases that this version of IF-IMC supports are as follows:

• A TNCC and one or more IMCs that support the same platform binding have been installed
on an endpoint. The TNCC finds and loads the IMCs. Then it runs one or more Integrity
Check Handshakes. The IMCs and TNCC may use any of the features of IF-IMC.

• A TNCC that supports the Java Platform Binding has restricted privileges/permissions (as
when loaded into a sandbox in a web browser). It loads IMCs that support the Java Platform
Binding and runs one or more Integrity Check Handshakes. The IMCs may actually have
greater privileges than the TNCC (or they may not be sandboxed).

• A TNCC that supports the Java Platform Binding runs with generous privileges but chooses
to run IMCs with restricted privileges for security reasons. It loads IMCs and runs one or more
Integrity Check Handshakes.

• A TNCC is running on an endpoint. When an IMC is installed or uninstalled, the TNCC
notices this and loads or unloads the IMC.

Note that several of these use cases were supported by previous versions of IF-IMC. Previous
versions of the IF-IMC specification did not document use cases.

2.4 Non-supported Use Cases
Several use cases, including but not limited to this one, are not covered by (but not prevented by)
this version of IF-IMC:

• A TNCC installs an IMC on an endpoint.

2.5 Requirements
Here are the requirements that IF-IMC must meet in order to successfully play its role in the TNC
architecture.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 10 of 74
 TCG PUBLISHED

• Meets the needs of the TNC architecture

The API must support all the functions and use cases described in the TNC architecture as
they apply to the relationship between the TNC Client and IMC components. The API must
support multiple TNCCs on a single AR and multiple overlapping network connections and
Integrity Check Handshakes for a single TNCC. The API must allow an IMC to act as a front
end for one or more applications or to handle everything within the IMC, as determined by the
IMC implementer.

• Secure

The integrity and confidentiality of communications between an IMC and an IMV must be
protected. The TNC Client and TNC Server are assumed to provide a secure
communications tunnel between the IMCs and the IMVs. The IMCs and IMVs may choose to
add other security mechanisms, but those are out of scope for this document.

The security requirements for IF-IMC include requirements that unauthorized parties cannot
observe communications between the IMC and the TNC Client and that only authorized IMCs
can communicate with the TNC Client across IF-IMC. See the Security Considerations
section of this document for detailed discussion.

• Efficient

The TNC architecture delays network access until the endpoint is determined to not pose a
security threat to the network based on its asserted integrity information. To minimize user
frustration, it is essential to minimize delays and make IMC-IMV communications as rapid
and efficient as possible. Efficiency is also important when you consider that some network
endpoints are small and low powered.

• Extensible

IF-IMC needs to expand over time as new features are added to the TNC architecture. The
IF-IMC API must allow new features to be added easily, providing for a smooth transition and
allowing newer and older architectural components to continue to work together.

• Easy to use and implement

IF-IMC should be easy for TNC Client and IMC vendors to use and implement. It should allow
them to enhance existing products to support the TNC architecture and integrate legacy code
without requiring substantial changes. The API should also make things easy for system
administrators and end-users. Components of the TNC architecture should plug together
automatically without requiring manual configuration.

• Platform-independent

Since most or all endpoints on a network will be subject to integrity checks, the IF-IMC API
must function on as many platforms as possible. At least Java, Windows, Linux (most
common flavors), and other UNIX variants must be supported. Platform bindings included in
this specification describe how platform-specific issues are handled.

• Language-independent

The IF-IMC API must support the widest possible variety of languages: C, C++, C#, Java,
Visual Basic, assembly language, and others. Therefore, this specification defines an

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 11 of 74
 TCG PUBLISHED

abstract API and language-specific bindings. All language-specific bindings are required to
support all capabilities of the abstract API.

• Allow Java IMCs and TNCCs to contain or interface with native code

TNC components that use the Java Platform Binding may need to include or interface with
native (non-Java) code. The Java Platform Binding should not include any explicit support for
this but it should not prevent it either.

2.6 Non-Requirements
Here are certain requirements that IF-IMC explicitly is not required to meet. This list is not
exhaustive (complete).

• Supporting communications between IMCs and TNCCs written in different languages

While the IF-IMC API must support the widest possible variety of languages (C, C++, C#,
Java, Visual Basic, etc.), it is not required to provide a standard manner for a TNCC written in
one language (like C) to load an IMC written in one language (like Java). Depending on the
platform and language, this can be quite difficult. When it’s not difficult, we will support such
interoperation (as with the Microsoft Windows DLL Binding, which supports interoperation
among all languages that can easily call and/or implement a DLL). But support for such
cross-language compatibility is not required. Future versions of this API may add such
support (perhaps via an RPC mechanism).

• Supporting several TNCCs from different vendors running in a single Java Virtual Machine at
the same time

The Java Platform Binding for IF-IMC requires the TNCC to supply certain standard classes
and interfaces. Having two implementations of these classes in a single Java Virtual Machine
would cause problems.

2.7 Assumptions
Here are the assumptions that IF-IMC API makes about other components in the TNC
architecture.

• Secure Message Transport

The TNC Client and TNC Server are assumed to provide a secure communications tunnel for
messages sent between the IMCs and the IMVs.

• Reliable Message Delivery

The TNC Client and TNC Server are assumed to provide reliable delivery for messages sent
between the IMCs and the IMVs, consistent with the description of message delivery in
section 2.10.4 of this specification. In the event that reliable delivery cannot be provided, the
TNC Client is expected to terminate the connection.

2.8 Keywords
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in RFC 2119 [2]. This specification does not distinguish blocks of
informative comments and normative requirements. Therefore, for the sake of clarity, note that
lower case instances of must, should, etc. do not indicate normative requirements.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 12 of 74
 TCG PUBLISHED

2.9 Abstract API Naming Conventions
To avoid name conflicts, all identifiers in the IF-IMC Abstract API have a name that begins with

“TNC_”. Note that this only pertains to the IF-IMC Abstract API. Since Java includes good support

for scoped names, the Java Platform Binding often omits this prefix.

Functions described in this document that are to be implemented by an IMC have a name that

begins with “TNC_IMC_”. This prefix is followed by words describing the operation performed by

the function.

Functions described in this document that are to be implemented by a TNC Client (known as

“callbacks") have a name that begins with “TNC_TNCC_”. This prefix is followed by words

describing the operation performed by the function.

Vendor-specific functions MUST have a name that begins with “TNC_XXX_” where XXX is

replaced by the vendor ID of the organization that defined the extension. See section 3.2.4 for
more information and requirements on vendor-specific functions.

2.10 Features Provided by IF-IMC
This section documents the features provided by IF-IMC.

2.10.1 Integrity Check Handshake

One of the primary functions of IF-IMC is to enable message exchanges between IMCs and IMVs
to share security state allowing the IMVs to factor the integrity of the IMC’s security software state
into the access control decision. These communications always take place within the context of
an Integrity Check Handshake. In such a handshake, the IMCs send a batch of messages
(typically, integrity measurements) to the IMVs and the IMVs optionally respond with a batch of
messages (remediation instructions, queries for more information, etc.). This dialog may go on for
some time until the IMVs decide on their IMV Action Recommendations.

2.10.2 Connection Management
A connection between a TNCC and a TNCS may include several Integrity Check Handshakes: an
initial handshake that ends with the endpoint being told to perform remediation such as applying
patches (which may involve rebooting the endpoint), a subsequent handshake once the
remediation is complete, and sometimes even later handshakes such as when policies change.
Handshakes for a given TNCC-TNCS pair cannot be nested. One such handshake must end
before another can begin. To optimize and manage handshakes, the TNCC provides connection
management features.

When a new TNCC-TNCS relationship is established, the TNCC chooses a network connection
ID to refer to that relationship. The TNCC informs the IMCs of the new network connection and
updates them whenever the state of the network connection changes. When a network
connection is complete, the TNCC notifies the IMCs that the network connection ID will be
deleted and then does so. Note that the connection ID is local to the TNCC (like a socket
descriptor in UNIX), not shared with the TNCS.

A TNCC SHOULD maintain the same network connection ID across many Integrity Check
Handshakes between a particular TNCC-TNCS pair. There are two reasons to maintain a
network connection ID beyond a single Integrity Check Handshake. First, this allows the IMCs
and IMVs to maintain state information associated with an earlier handshake. Second, it allows
an IMC to request a handshake retry for a particular connection, as when the IMC has completed
remediation requested by an IMV. A TNCC SHOULD ensure that connection IDs persist long
enough to permit handshake retry. Since remediation may require restarting the operating
system, power cycling, and other measures, the connection ID SHOULD be remembered even
across these measures so that the handshake can be retried after remediation. However, the
TNCS MAY refuse to maintain state on old handshakes, forcing a full handshake every time. This
is fine. The network connection ID is assigned by the TNCC. Little or no cooperation from the

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 13 of 74
 TCG PUBLISHED

TNCS is required to allow the TNCC to maintain the network connection ID. The TNCC MUST
use the same connection ID for all IMCs when referring to a particular connection.

If more than one TNC Client may be running at once on a single machine (rare, but possible) and
an IMC is loaded by both TNC Clients, the IMC MUST work properly even if the TNC Clients
happen to choose the same network connection ID for different connections. This should not be
too hard, since the IMCs will be loaded separately. However, it may become an issue if the IMCs
need to communicate with a common application and refer to the network connections.

2.10.3 Remediation and Handshake Retry
In several cases, it is useful to retry an Integrity Check Handshake. First, an endpoint may be
isolated until remediation is complete. Once remediation is complete, an IMC can inform the
TNCC of this fact and suggest that the TNCC retry the Integrity Check Handshake. Second, a
TNCS can initiate a retry of an Integrity Check Handshake (if the TNCS or IMV policies change or
as a periodic recheck). Third, an IMC or IMV can request a handshake retry in response to a
condition detected by the IMC or IMV (suspicious activity, for instance). In any case, it’s generally
desirable (but not always possible) to reuse state established by the earlier handshake and to
avoid disrupting network connectivity during the handshake retry. IF-TNCCS 1.0 and IF-T 1.0 do
not provide any support for handshake retry without disrupting network connectivity but future
versions of these specifications will probably do so. In the mean time, proprietary protocols may
provide this capability.

To support handshake retries, the TNCC SHOULD maintain a network connection ID after an
Integrity Check Handshake has been completed. This network connection ID can then be used by
the TNCC to inform IMCs that it is retrying the handshake or by an IMC to request a retry (due to
remediation or another reason).

Handshake retry may not always be possible due to limitations in the TNCC, NAR, PEP, or other
entities. In other cases, retry may require disrupting network connectivity. For these reasons, IF-
IMC supports handshake retry and requires IMCs to handle handshake retries (which is usually
trivial) but does not require TNCCs to honor IMC requests for handshake retry. In fact, IF-IMC
requires an IMC to provide information about the reason for requesting handshake retry so that
the TNCC or TNCS can decide whether it wants to retry (which may disrupt network access).

Note that remediation instructions are delivered from IMVs to IMCs through standard IMV-IMC
messages. There is no special support in IF-IMC for this feature. If remediation instructions
require network access, IMCs SHOULD NOT follow them until the network connection state
changes to success or isolated.

Incompatible IMV policies (more likely with multiple network connections) can cause flip-flopping
or other problems if an IMC receives conflicting remediation instructions from different IMVs.
IMCs may want to detect this as much as possible and notify the user or administrator or ask
them for guidance or refuse to perform remediation that would cause them to flip-flop.

2.10.4 Message Delivery

One of the critical functions of the TNC architecture is conveying messages between IMCs and
IMVs. Each message sent in this way consists of a message body, a message type, and a
recipient type.

The message body is a sequence of octets (bytes). The TNCC and TNCS SHOULD NOT parse
or interpret the message body. They only deliver it as described below. Interpretation of the
message body is left to the ultimate recipients of the message, the IMCs or IMVs. A zero length
message is perfectly valid and MUST be properly delivered by the TNCC and TNCS just as any
other IMC-IMV message would be.

The message type is a four octet number that uniquely identifies the format and semantics of the
message. The method used to ensure the uniqueness of message types while providing for
vendor extensions is described in section 3.4.2.5. From the perspective of IF-IMC and the TNCC
and TNCS, this method is not important. The message type is simply a number.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 14 of 74
 TCG PUBLISHED

The recipient type is simply a flag indicating whether the message should be delivered to IMVs or
IMCs. Messages sent by IMCs are delivered to IMVs and vice versa so this flag does not appear
in IF-IMC. All messages sent by an IMC through IF-IMC have a recipient type of IMV. All
messages received by an IMC through IF-IMC have a recipient type of IMC. The recipient type
does not show up in IF-IMC or IF-IMV, but it helps in explaining message routing.

The routing and delivery of messages is governed by message type and recipient type. Each IMC
and IMV indicates through IF-IMC and IF-IMV which message types it wants to receive. The
TNCC and TNCS are then responsible for ensuring that any message sent during an Integrity
Check Handshake is delivered to all recipients that have a recipient type matching the message’s
recipient type and that have indicated the wish to receive messages whose type matches the
message’s message type. If no recipient has indicated a wish to receive a particular message
type, the TNCC and TNCS can handle these messages as they like: ignore, log, etc.

WARNING: The message routing and delivery algorithm just described is not a one-to-one model.
A single message may be received by several recipients (for example, two IMVs from a single
vendor, two copies of an IMC, or nosy IMVs that monitor all messages). If several of these
recipients respond, this may confuse the original sender. IMCs and IMVs MUST work properly in
this environment. They MUST NOT assume that only one party will receive and/or respond to a
message.

IF-IMC allows an IMC to send and receive messages using this messaging system. Note that this
system should not be used to send large amounts of data. The messages will often be sent
through PPP or similar protocols that do not include congestion control and are not well suited to
bulk data transfer. If an IMC needs to download a patch (for instance), the IMV should indicate
this in the remediation instructions. The IMC will process those instructions after network access
(perhaps isolated) has been established and can then download the patch via any appropriate
protocol.

All messages sent with TNC_TNCC_SendMessage and received with

TNC_IMC_ReceiveMessage are between the IMC and IMV. The IMC communicates with the

TNCC by calling functions (standard and vendor-specific) in the IF-IMC, not by sending
messages. The TNCC should not interfere with communications between the IMC and IMVs by
consuming or blocking IMC-IMV messages.

2.10.5 Batches

IMC-IMV messages will frequently be carried over protocols (like EAP) that require participants to
take turns in sending (“half duplex”). To operate well over such protocols, the TNCC sends a
batch of messages and the TNCS responds with some messages.

To simplify the development of IMCs and IMVs, IF-IMC always groups IMC-IMV messages into
batches. IMCs always send the first batch of messages. IMVs can then respond with a batch of
messages, IMCs can respond to those, etc. If the underlying protocol is not half duplex, the
TNCC and TNCS still must send IMC-IMV messages in batches and take turns in delivering those
messages.

An IMC can only send a message in three circumstances: during the initial batch (when

TNC_IMC_BeginHandshake is called), in response to a message received by the IMC in a later

batch (when TNC_IMC_ReceiveMessage is called), and at the end of a batch (when

TNC_IMC_BatchEnding is called). At any of these times, the IMC MAY send one or more

messages by calling TNC_TNCC_SendMessage once for each message to be sent and then

returning from TNC_IMC_BeginHandshake, TNC_IMC_ReceiveMessage, or

TNC_IMC_BatchEnding. Note that if the IMC does not call TNC_TNCC_SendMessage before

returning from TNC_IMC_BeginHandshake, TNC_IMC_ReceiveMessage, or

TNC_IMC_BatchEnding, this indicates that it does not want to send any messages at this time.

IMVs use a similar mechanism except that they can only send messages in response to
messages received or at the end of a batch.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 15 of 74
 TCG PUBLISHED

If no IMCs want to send a message in a particular batch, the TNCC and TNCS will proceed to
complete the handshake. Similarly, if no IMVs want to send a message in a particular batch, the
TNCC and TNCS will proceed to complete the handshake. Therefore, an IMC that is not engaged
in a dialog with an IMV may well find that the handshake has ended.

When an Integrity Check Handshake is beginning and the TNCC wants to solicit messages from

IMCs for the first batch, it calls TNC_IMC_BeginHandshake for each IMC. This indicates to the

IMCs that an Integrity Check Handshake is beginning and they should send any IMC-IMV

messages. IMCs send those messages by calling the TNC_TNCC_SendMessage function before

returning from TNC_IMC_BeginHandshake. Once all IMCs have finished sending their

messages for a batch, the TNCC will send those messages to the TNCS and await its response.
When this response is received, the TNCC will deliver to IMCs any messages sent by IMVs and
start accepting messages from IMCs.

To deliver IMV messages to IMCs, the TNCC calls TNC_IMC_ReceiveMessage. The IMC may

process the message immediately or queue it for later processing. However, if the IMC wants to

send a message in response, it must do so by calling the TNC_TNCC_SendMessage function

before returning from TNC_IMC_ReceiveMessage. Once all IMCs have finished sending their

messages for a batch, the TNCC will send those messages to the TNCS and await its response.
When this response is received, the TNCC will deliver to IMCs any messages sent by IMVs and
start accepting messages from IMCs.

As with all IMC functions, the IMC SHOULD NOT wait a long time before returning from

TNC_IMC_BeginHandshake, TNC_IMC_ReceiveMessage, or TNC_IMC_BatchEnding. A

long delay might frustrate users or exceed network timeouts (PDP, PEP or otherwise). IMCs that
need to perform a lengthy process may want to simply send a status message, indicating that
they are working. The IMVs can respond in the next batch with a status query and thus the
handshake can be kept going.

Note that a TNCC or TNCS MAY cut off IMC-IMV communications at any time for any reason,
including limited support for long conversations in underlying protocols, user or administrator

intervention, or policy. If this happens, the TNCC will return TNC_RESULT_ILLEGAL_OPERATION

from TNC_TNCC_SendMessage.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 16 of 74
 TCG PUBLISHED

3 IF-IMC Abstract API
The IF-IMC Abstract API defines a small number of standard functions that an IMC can
implement. The TNC Client calls these functions when it needs the IMC to perform an action
(such as processing a message from an IMV). The API also defines certain functions that the
TNC Client implements (known as “callbacks”). The IMC calls these functions when it needs the
TNC Client to perform an action (such as sending a message to an IMV).

3.1 Platform and Language Independence
IF-IMC is a language-independent abstract API. It can be mapped to almost any programming
language. This section defines the abstract API, using C syntax (as defined in [5]) for ease of
comprehension. Because different languages have different conventions and constructs
(functions, objects, etc.), the abstract API may need to be modified for different languages in
different bindings. However, this should be avoided as much as possible to increase compatibility
between IMCs and TNCCs written in different languages.

Section 6 provides a C header file that serves as a binding for the C language with the Microsoft
Windows DLL platform binding. The Java Platform Binding in section 4.3 provides a binding for
the Java Programming Language. Bindings for other programming languages may be defined in
the future. However, many languages can use or implement libraries with C bindings.
Implementers SHOULD use the C language binding when possible for maximum compatibility
with other IMCs and TNC Clients on their platform. This specification does not provide a standard
way to mix an IMC written in one language with a TNCC written in another language, beyond the
support that may be provided by platform-specific bindings.

IF-IMC is also a platform-independent API. It is designed to support almost any platform.
Platform-specific bindings are described in section 4. The IF-IMC API definition sometimes uses
language like “unsigned integer of at least 32 bits.” To see the exact definition of this for a
particular platform (operating environment and/or language), see the platform-specific bindings.

3.2 Extensibility
To meet the Extensibility requirement defined above, the IF-IMC API includes several extensibility
mechanisms: an API version number, dynamic function binding, and vendor IDs.

3.2.1 API Version

This document defines version 1 of the TNC IF-IMC API. Future versions may be incompatible
due to removing, adding, or changing functions, types, and constants. However, the

TNC_IMC_Initialize function and its associated types and constants will not change so that

version incompatibilities can be detected. A TNCC or IMC can even support multiple versions of
the IF-IMC API for maximum compatibility. See section 3.7.1 for details.

3.2.2 Dynamic Function Binding

Platforms that support IF-IMC SHOULD support dynamic function binding. This feature allows a
TNCC or IMC to define functions that go beyond those included in this API and allows the other
party to determine whether those functions are defined, call them if so, and handle their absence
gracefully. Dynamic function binding is needed to support optional and vendor-specific functions
and so that a TNCC or IMC can support multiple API versions.

On platforms that don’t define a Dynamic Function Binding mechanism, all optional functions
MUST be implemented, vendor-specific functions MUST NOT be implemented or used except by
private convention, and provisions must be made to insure that TNCCs and IMCs that support
different version numbers interact safely.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 17 of 74
 TCG PUBLISHED

3.2.3 Vendor IDs

The IF-IMC API supports several forms of vendor extensions. IMC or TNCC vendors can define
vendor-specific functions and make them available to the other party. IMC or TNCC vendors can
define vendor-specific result codes. And IMC vendors can define vendor-specific message types
(for the messages sent between IMCs and IMVs).

In each of these cases, SMI Private Enterprise Numbers are used to provide a separate identifier
space for each vendor. IANA provides a registry for SMI Private Enterprise Numbers at
http://www.iana.org/assignments/enterprise-numbers. Any organization (including non-profit
organizations, governmental bodies, etc.) can obtain one of these numbers at no charge and
thousands of organizations have done so. Within this document, SMI Private Enterprise Numbers
are known as “vendor IDs”. Vendor ID zero (0) is reserved for identifiers defined by the TNC.
Vendor ID 16777215 (0xffffff) is reserved for use as a wildcard. For details of how vendor IDs are
used to support vendor-specific functions, result codes, and message types, see sections 3.2.4,
3.4.2.10, and 3.4.2.5.

3.2.4 Vendor-Specific Functions

The IMC and TNC client MAY extend the IF-IMC API by defining vendor-specific functions that go
beyond those described here. An IMC or TNC Client MUST work properly if a vendor-specific
function is not implemented by the other party and MUST ignore vendor-specific functions that it
does not understand. To determine whether a vendor-specific function has been implemented,
use the dynamic function binding mechanism defined in the platform binding.

Vendor-specific functions MUST have a name that begins with “TNC_XXX_” where XXX is

replaced by the vendor ID of the organization that defined the extension. The vendor ID is
converted to ASCII numbers or the equivalent, using a decimal representation whose initial digit
MUST NOT be zero (0). For instance, the organization owning the vendor ID 1 could define a

vendor-specific function named “TNC_1_ProcessMapping”. Avoid defining names longer than

31 characters since some platforms do not support such long names well. If a vendor-specific
function is designed to be implemented by only one TNC component, then it is helpful to put the
name of this component in the function name after the vendor ID. For instance, a function named

“TNC_1_IMC_Reinstall” is clearly intended to be implemented by IMCs.

3.3 Threading and Reentrancy
Threading is addressed in the platform-specific bindings in section 4.

The TNCC MUST be reentrant (able to receive and process a function call even when one is
already underway). IMC DLLs are not required to be reentrant. Therefore, the TNC Client MUST

NOT call an IMC DLL from a callback function (like TNC_TNCC_SendMessage) and MUST NOT

call an IMC DLL from one thread if another thread has an active call into that DLL. However,
since more than one TNC Client may be running at once on a single machine (rare, but possible),
any IMC DLL MUST be prepared to be loaded in multiple processes at once and to have these
processes issue overlapping calls to the DLL. An IMC DLL MAY return

TNC_RESULT_CANT_RESPOND from any function if it is temporarily unable to respond (perhaps

because it can only handle one network connection at once). If at all possible, the IMC DLL
should avoid doing this since it may cause the TNCC to proceed without the IMC’s messages,
resulting in denied network access or even unnecessary remediation.

Note that an IMC DLL may just be a stub that communicates with a separate process that
processes and responds to IMV messages. This will be fairly common, especially when there is
already a background process running (to do real-time virus checking, for instance). Alternatively,
the IMC DLL may be very simple, reporting stored values. This will also be very common,
especially when integrity checks are fairly static. The checks can run periodically and store their
results. The IMC DLL can just read and report these stored results.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 18 of 74
 TCG PUBLISHED

3.4 Data Types
This section describes the data types defined and used in the abstract IF-IMC API.

3.4.1 Basic Types

These types are the most basic ones used by the IF-IMC API. They are defined in a platform-
dependent and language-dependent manner to meet the requirements described in this section.
Consult section 4 to see how these types are defined for a particular platform and language.

Type Definition

TNC_UInt32 Unsigned integer of at least 32 bits

TNC_BufferReference Reference to buffer of octets

3.4.2 Derived Types

These types are defined in terms of the more basic ones defined in section 3.4.1. They are
described in the following subsections.

Type Definition Usage

TNC_IMCID TNC_UInt32 IMC ID

TNC_ConnectionID TNC_UInt32 Network Connection ID

TNC_ConnectionState TNC_UInt32 Network Connection State

TNC_RetryReason TNC_UInt32 Handshake retry reason

TNC_MessageType TNC_UInt32 Message type

TNC_MessageTypeList Platform-
specific

Reference to list of
TNC_MessageType

TNC_VendorID TNC_UInt32 Vendor ID

TNC_Subtype TNC_UInt32 Message subtype

TNC_Version TNC_UInt32 IF-IMC API version number

TNC_Result TNC_UInt32 Result code

3.4.2.1 IMC ID

When a TNC Client loads an IMC, it assigns it an IMC ID (represented by the TNC_IMCID type).

This allows the IMC to identify itself when calling TNCC functions. The IMC ID is a TNC_UInt32

chosen by the TNCC and passed to the TNC_IMC_Initialize function. It is valid until the

TNCC calls TNC_IMC_Terminate for this IMC.

There is no internal structure to an IMC ID and there are no reserved values. The TNCC can
choose any value for the IMC ID and the IMC MUST NOT attach any significance to the value
chosen.

3.4.2.2 Network Connection ID

A TNCC may be negotiating with several different TNCSs at once (if the endpoint has several
network interfaces that are coming up simultaneously, for instance). Each of these TNCC-TNCS
pairs is referred to as a “network connection”.

To help the IMC track which messages go with which network connection and perform other
connection management tasks, the TNCC chooses a network connection ID (represented by the

TNC_ConnectionID type) that identifies a particular network connection. This connection ID is

local to the TNCC and not shared with the TNCS. It’s like a socket descriptor in UNIX. When a

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 19 of 74
 TCG PUBLISHED

network connection is created, the TNCC chooses a network connection ID and then passes the

network connection ID to the IMC as a parameter to the TNC_IMC_NotifyConnectionChange

function with a newState of TNC_CONNECTION_STATE_CREATE. This informs the IMC that a

new network connection has begun. The network connection ID then becomes valid.

The IMC and TNCC use this network connection ID to refer to the network connection when
delivering messages and performing other operations relevant to the network connection. This
helps ensure that IMC messages are sent to the right TNCS and helps the IMC match up
messages from IMVs with any state the IMC may be maintaining from earlier parts of that IMC-
IMV conversation (even extending across multiple Integrity Check Handshakes in a single
network connection).

The TNCC notifies IMCs of changes in network connection state (handshake success,

handshake failure, etc.) by calling the TNC_IMC_NotifyConnectionChange function. When a

network connection is finished, the TNCC first notifies IMCs of this by calling the

TNC_IMC_NotifyConnectionChange function with the network connection ID and a

newState of TNC_CONNECTION_STATE_DELETE. The network connection ID then becomes

invalid and any information associated with it can be deleted. Once a network connection enters

the TNC_CONNECTION_STATE_DELETE state, it cannot transition to any other state.

As described in section 2.10.3 above, it is sometimes desirable to retry an Integrity Check
Handshake (when remediation is complete, for instance). Some TNCCs will not support this but
all IMCs MUST do so. To indicate that a network connection retry is beginning, a TNCC notifies

the IMCs by calling the TNC_IMC_NotifyConnectionChange function with the network

connection ID and a newState of TNC_CONNECTION_STATE_HANDSHAKE. This means that an

Integrity Check Handshake will soon begin.

An IMC can ask the TNCC to retry an Integrity Check Handshake by calling the

TNC_TNCC_RequestConnectionRetry function. For details on this, see the description of that

function.

There is no internal structure to a network connection ID. There is one reserved value:

TNC_CONNECTIONID_ANY (0xFFFFFFFF). The TNCC can choose any other value for a network

connection ID that does not conflict with another valid network connection ID for the same TNCC-
IMC pair. It can even choose a network connection ID that was used by a previous network
connection that has now been deleted and is invalid. The IMC MUST NOT attach any significance
to the value chosen.

3.4.2.3 Network Connection State

The TNCC uses the TNC_IMC_NotifyConnectionChange function to notify IMCs of changes

in network connection state. The network connection state is represented as a TNC_UInt32. The

TNCC MUST pass one of the values listed in section 3.5.3. The TNCC MUST NOT use any other
network connection state value with this version of the IF-IMC API.

3.4.2.4 Handshake Retry Reason

The IMC can ask the TNCC to retry an Integrity Check Handshake by calling the

TNC_TNCC_RequestHandshakeRetry function. One of the parameters to that function is a

TNC_RetryReason. This type is represented as a TNC_UInt32. The IMC MUST pass one of

the values listed in section 3.5.5. The IMC MUST NOT use any other handshake retry reason
value with this version of the IF-IMC API.

3.4.2.5 Message Type

As described in section 2.10.4, the TNC architecture routes messages between IMCs and IMVs
based on their message type. Each message has a message type that uniquely identifies the
format and semantics of the message. A message type is a 32-bit number. In the IF-IMC API, this

number is represented as a TNC_UInt32.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 20 of 74
 TCG PUBLISHED

To ensure the uniqueness of message types while providing for vendor extensions, vendor-
specific message types are formed by placing a vendor-chosen message subtype in the least
significant 8 bits of the message type and the vendor’s vendor ID in the most significant 24 bits of
the message type. Message types standardized by the TCG will have the reserved value zero (0)
in the most significant 24 bits.

The vendor ID TNC_VENDORID_ANY (0xffffff) and the subtype TNC_SUBTYPE_ANY (0xff)

are reserved as wild cards as described in section 3.8.1. An IMC MUST NOT send messages
whose message type includes one of these reserved values.

TNC Clients and TNC Servers MUST properly deliver messages with any message type (as
described in section 2.10.4).

3.4.2.6 Message Type List

The TNC_MessageTypeList type represents a list of message types. Its exact representation is

platform-specific, but will typically be a pointer or reference to an array of TNC_MessageTypes.

3.4.2.7 Vendor ID

The TNC_VendorID type represents a 24-bit vendor ID as described in section 3.2.3. It is

represented as a TNC_UInt32, but only values from 0 to 16777215 (0xffffff) are valid. This type

is used when forming and parsing message types. For a full description of vendor IDs, see
section 3.2.3.

The message type TNC_VENDORID_ANY (0xffffff) is reserved as a wild card as described in

section 3.8.1. IMCs may request messages with this vendor ID to indicate that they want to
receive messages whose message type includes any vendor ID. However, an IMC MUST NOT
send messages whose message type includes this reserved value and a TNCC MUST NOT
deliver such messages.

3.4.2.8 Message Subtype

The TNC_MessageSubtype type represents an 8-bit message subtype. It is represented as a

TNC_UInt32, but only values from 0 to 255 are legal. This type is used when forming and

parsing message types.

The message subtype TNC_SUBTYPE_ANY (0xff) is reserved as a wild card as described in

section 3.8.1. IMCs may request messages with this message subtype to indicate that they want
to receive messages whose message subtype has any value. However, an IMC MUST NOT send
messages whose message subtype includes this reserved value and a TNCC MUST NOT deliver
such messages.

3.4.2.9 Version

The TNC_Version type represents an API version number. See sections 3.2.1 and 3.7.1 for

details on how this is used.

3.4.2.10 Result Code

Each function in the IF-IMC API returns a result code of type TNC_Result to indicate success or

the reason for failure. As noted above, a result code is represented as a TNC_UInt32, an

unsigned integer of at least 32 bits in length. To form a vendor-specific result code, place a
vendor-chosen subcode in the least significant 8 bits of the integer and the vendor’s vendor ID in
the next most significant 24 bits of the result code (the most significant 24 bits if the integer is 32
bits long). All result codes defined in this specification (listed in section 3.5.1) have the reserved
value zero (0) in the most significant 24 bits.

IMCs and TNCCs MUST be prepared for any function to return any result code. Vendor-specific
result codes are always permissible and new standard result codes may be defined without
changing the version number of the IF-IMC API. Any unknown non-zero result code SHOULD be

treated as equivalent to TNC_RESULT_OTHER.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 21 of 74
 TCG PUBLISHED

3.5 Defined Constants
This section describes the constants defined in the abstract IF-IMC API.

3.5.1 Result Code Values

Each function in the IF-IMC API returns a result code of type TNC_Result to indicate success or

reason for failure. Here is the set of standard result codes defined by this specification. Vendor-
specific result codes are always permissible and new standard result codes may be defined
without changing the version number of the IF-IMC API. IMCs and TNCCs MUST be prepared for
any function to return any result code. Any unknown non-zero result code SHOULD be treated as

equivalent to TNC_RESULT_OTHER. IMCs or TNCCs MAY communicate errors to users, log

them, ignore them, or handle them in another way that is compliant with this specification.

If an IMC function returns TNC_RESULT_FATAL, then the IMC has encountered a permanent

error. The TNCC SHOULD call TNC_IMC_Terminate as soon as possible. The TNCC MAY

then try to reinitialize the IMC with TNC_IMC_Initialize or try other measures such as

unloading and reloading the IMC and then reinitializing it.

If a TNCC function returns TNC_RESULT_FATAL, then the TNCC has encountered a permanent

error.

Result Code Definition

TNC_RESULT_SUCCESS Function completed successfully

TNC_RESULT_NOT_INITIALIZED TNC_IMC_Initialize has not been called

TNC_RESULT_ALREADY_INITIALIZED TNC_IMC_Initialize was called twice
without a call to TNC_IMC_Terminate

TNC_RESULT_NO_COMMON_VERSION No common IF-IMC API version between
IMC and TNC Client

TNC_RESULT_CANT_RETRY TNCC cannot attempt handshake retry

TNC_RESULT_WONT_RETRY TNCC refuses to attempt handshake retry

TNC_RESULT_INVALID_PARAMETER Function parameter is not valid

TNC_RESULT_CANT_RESPOND IMC cannot respond now

TNC_RESULT_ILLEGAL_OPERATION Illegal operation attempted

TNC_RESULT_OTHER Unspecified error

TNC_RESULT_FATAL Unspecified fatal error

3.5.2 Version Numbers

As noted in section 3.2.1, this specification defines version 1 of the TNC IF-IMC API. Future
versions of this specification will define other version numbers. See section 3.7.1 for a description
of how version numbers are handled.

Version Number Definition

TNC_IFIMC_VERSION_1 The version of IF-IMC API defined here

3.5.3 Network Connection ID Values

The reserved value TNC_CONNECTIONID_ANY MUST NOT be used as a normal network

connection ID. Instead, it may be passed to TNC_TNCC_RequestHandshakeRetry to indicate

that handshake retry is requested for all current network connections.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 22 of 74
 TCG PUBLISHED

Network Connection ID Value Definition

TNC_CONNECTIONID_ANY All current network connections

3.5.4 Network Connection State Values

This is the complete set of permissible values for the TNC_Connection_State type in this

version of the IF-IMC API.

Network Connection State Value Definition

TNC_CONNECTION_STATE_CREATE Network connection created

TNC_CONNECTION_STATE_HANDSHAKE Handshake about to start

TNC_CONNECTION_STATE_ACCESS_ALLOWED Handshake completed. TNCS
recommended that requested
access be allowed.

TNC_CONNECTION_STATE_ACCESS_ISOLATED Handshake completed. TNCS
recommended that isolated access
be allowed.

TNC_CONNECTION_STATE_ACCESS_NONE Handshake completed. TNCS
recommended that no network
access be allowed.

TNC_CONNECTION_STATE_DELETE About to delete network
connection ID. Remove all
associated state.

3.5.5 Handshake Retry Reason Values

This is the complete set of permissible values for the TNC_Retry_Reason type in this version of

the IF-IMC API.

Handshake Retry Reason Value Definition

TNC_RETRY_REASON_IMC_REMEDIATION_COMPLETE IMC has completed remediation

TNC_RETRY_REASON_IMC_SERIOUS_EVENT IMC has detected a serious
event and recommends
handshake retry even if
network connectivity must be
interrupted

TNC_RETRY_REASON_IMC_INFORMATIONAL_EVENT IMC has detected an event
that it would like to
communicate to the IMV. It
requests handshake retry but
not if network connectivity
must be interrupted

TNC_RETRY_REASON_IMC_PERIODIC IMC wishes to conduct a
periodic recheck. It
recommends handshake retry
but not if network
connectivity must be
interrupted

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 23 of 74
 TCG PUBLISHED

3.5.6 Vendor ID Values

These are reserved vendor ID values. Other vendor IDs between 1 and 16777214 (0xfffffe) may
be used as described in section 3.4.2.7. Note that vendor IDs are assigned by IANA as described
in section 3.2.3.

Vendor ID Value Value Definition

TNC_VENDORID_TCG 0 Reserved for TCG-defined values

TNC_VENDORID_ANY 0xffffff Wild card matching any vendor ID

3.5.7 Message Subtype Values

This is a reserved message subtype value. Other message subtypes between 0 and 254 may be
used as described in section 3.4.2.8. Note that message subtypes are assigned by vendors as
described in section 3.4.2.5.

Message Subtype Value Value Definition

TNC_SUBTYPE_ANY 0xff Wild card matching any message
subtype

3.6 Mandatory and Optional Functions
Some of the functions in the IF-IMC API are marked as mandatory below. Mandatory functions
MUST be implemented. The rest of the functions in the IF-IMC API are marked as optional and
need not be implemented. An IMC or TNC Client MUST work properly if one or more optional
functions are not implemented by the other party. To determine whether an optional function has
been implemented, use the Dynamic Function Binding mechanism defined in most platform
bindings. On platforms that don’t define a Dynamic Function Binding mechanism, all optional
functions MUST be implemented.

3.7 IMC Functions
These functions are implemented by the IMC and called by the TNC Client.

3.7.1 TNC_IMC_Initialize (MANDATORY)

TNC_Result TNC_IMC_Initialize(
/*in*/ TNC_IMCID imcID,
/*in*/ TNC_Version minVersion,
/*in*/ TNC_Version maxVersion,
/*out*/ TNC_Version *pOutActualVersion);

Description:

The TNC Client calls this function to initialize the IMC and agree on the API version number to be
used. It also supplies the IMC ID, an IMC identifier that the IMC must use when calling TNC
Client callback functions. All IMCs MUST implement this function.

The TNC Client MUST NOT call any other IF-IMC API functions for an IMC until it has

successfully completed a call to TNC_IMC_Initialize(). Once a call to this function has

completed successfully, this function MUST NOT be called again for a particular IMC-TNCC pair

until a call to TNC_IMC_Terminate has completed successfully.

The TNC Client MUST set minVersion to the minimum IF-IMC API version number that it

supports and MUST set maxVersion to the maximum API version number that it supports. The

TNC Client also MUST set pOutActualVersion so that the IMC can use it as an output

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 24 of 74
 TCG PUBLISHED

parameter to provide the actual API version number to be used. With the C binding, this would

involve setting pOutActualVersion to point to a suitable storage location.

The IMC MUST check these to determine whether there is an API version number that it supports

in this range. If not, the IMC MUST return TNC_RESULT_NO_COMMON_VERSION. Otherwise, the

IMC SHOULD select a mutually supported version number, store that version number at

pOutActualVersion, and initialize the IMC. If the initialization completes successfully, the IMC

SHOULD return TNC_RESULT_SUCCESS. Otherwise, it SHOULD return another result code.

If an IMC determines that pOutActualVersion is not set properly to allow the IMC to use it as

an output parameter, the IMC SHOULD return TNC_RESULT_INVALID_PARAMETER. With the C

binding, this might involve checking for a NULL pointer. IMCs are not required to make this check
and there is no guarantee that IMCs will be able to perform it adequately (since it is often
impossible or very hard to detect invalid pointers).

Input Parameter Description

imcID IMC ID assigned by TNCC

minVersion Minimum API version supported by TNCC

maxVersion Maximum API version supported by TNCC

Output Parameter Description

pOutActualVersion Mutually supported API version number

Result Code Condition

TNC_RESULT_SUCCESS Success

TNC_RESULT_NO_COMMON_VERSION No common API version supported by IMC and
TNC Client

TNC_RESULT_ALREADY_INITIALIZED TNC_IMC_Initialize has already been called

and TNC_IMC_Terminate has not

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_RESULT_OTHER Unspecified non-fatal error

Other result codes Other non-fatal error

3.7.2 TNC_IMC_NotifyConnectionChange (OPTIONAL)

TNC_Result TNC_IMC_NotifyConnectionChange(
/*in*/ TNC_IMCID imcID,
/*in*/ TNC_ConnectionID connectionID
/*in*/ TNC_ConnectionState newState);

Description:

The TNC Client calls this function to inform the IMC that the state of the network connection

identified by connectionID has changed to newState. Section 3.5.4 lists all the possible

values of newState for this version of the IF-IMC API. The TNCC MUST NOT use any other

values with this version of IF-IMC.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 25 of 74
 TCG PUBLISHED

IMCs that want to track the state of network connections or maintain per-connection data
structures SHOULD implement this function. Other IMCs MAY implement it.

If the state is TNC_CONNECTION_STATE_CREATE, the IMC SHOULD note the creation of a new

network connection.

If the state is TNC_CONNECTION_STATE_ACCESS_ALLOWED or

TNC_CONNECTION_STATE_ACCESS_ISOLATED, the IMC SHOULD proceed with any

remediation instructions received during the Integrity Check Handshake. However, the IMC
SHOULD be prepared for delays in network access or even complete denial of network access,
even in these cases. Network access will often be delayed for a few seconds while an IP address
is acquired. And network access may be denied if the NAA overrides the TNCS Action
Recommendation reflected in the newState value.

If the state is TNC_CONNECTION_STATE_ACCESS_NONE, the IMC MAY discard any remediation

instructions received during the Integrity Check Handshake or it MAY follow them if possible.

If the state is TNC_CONNECTION_STATE_HANDSHAKE, an Integrity Check Handshake is about to

begin.

If the state is TNC_CONNECTION_STATE_DELETE, the IMC SHOULD discard any state pertaining

to this network connection and MUST NOT pass this network connection ID to the TNC Client
after this function returns (unless the TNCC later creates another network connection with the
same network connection ID).

In the imcID parameter, the TNCC MUST pass the IMC ID value provided to

TNC_IMC_Initialize. In the connectionID parameter, the TNCC MUST pass a valid

network connection ID. IMCs MAY check these values to make sure they are valid and return an

error if not, but IMCs are not required to make these checks. In the newState parameter, the

TNCC MUST pass one of the values listed in section 3.5.4.

Input Parameter Description

imcID IMC ID assigned by TNCC

connectionID Network connection ID whose state is changing

newState New network connection state

Result Code Condition

TNC_RESULT_SUCCESS Success

TNC_RESULT_NOT_INITIALIZED TNC_IMC_Initialize has not been called

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_RESULT_OTHER Unspecified non-fatal error

TNC_RESULT_FATAL Unspecified fatal error

Other result codes Other non-fatal error

3.7.3 TNC_IMC_BeginHandshake (MANDATORY)

TNC_Result TNC_IMC_BeginHandshake(
/*in*/ TNC_IMCID imcID,
/*in*/ TNC_ConnectionID connectionID);

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 26 of 74
 TCG PUBLISHED

Description:

The TNC Client calls this function to indicate that an Integrity Check Handshake is beginning and
solicit messages from IMCs for the first batch. The IMC SHOULD send any IMC-IMV messages it
wants to send as soon as possible after this function is called and then return from this function to
indicate that it is finished sending messages for this batch.

As with all IMC functions, the IMC SHOULD NOT wait a long time before returning from

TNC_IMC_BeginHandshake. To do otherwise would risk delaying the handshake indefinitely. A

long delay might frustrate users or exceed network timeouts (PDP, PEP or otherwise).

All IMCs MUST implement this function.

In the imcID parameter, the TNCC MUST pass the IMC ID value provided to

TNC_IMC_Initialize. In the connectionID parameter, the TNCC MUST pass a valid

network connection ID. IMCs MAY check these values to make sure they are valid and return an
error if not, but IMCs are not required to make these checks.

Input Parameter Description

imcID IMC ID assigned by TNCC

connectionID Network connection ID on which message was
received

Result Code Condition

TNC_RESULT_SUCCESS Success

TNC_RESULT_NOT_INITIALIZED TNC_IMC_Initialize has not been called

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_RESULT_OTHER Unspecified non-fatal error

TNC_RESULT_FATAL Unspecified fatal error

Other result codes Other non-fatal error

3.7.4 TNC_IMC_ReceiveMessage (OPTIONAL)

TNC_Result TNC_IMC_ReceiveMessage(
/*in*/ TNC_IMCID imcID,
/*in*/ TNC_ConnectionID connectionID,
/*in*/ TNC_BufferReference message,
/*in*/ TNC_UInt32 messageLength,
/*in*/ TNC_MessageType messageType);

Description:

The TNC Client calls this function to deliver a message to the IMC. The message is contained in
the buffer referenced by message and contains the number of octets (bytes) indicated by
messageLength. The type of the message is indicated by messageType. The message MUST be
from an IMV (or a TNCS or other party acting as an IMV).

The IMC SHOULD send any IMC-IMV messages it wants to send as soon as possible after this
function is called and then return from this function to indicate that it is finished sending
messages in response to this message.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 27 of 74
 TCG PUBLISHED

As with all IMC functions, the IMC SHOULD NOT wait a long time before returning from

TNC_IMC_ReceiveMessage. To do otherwise would risk delaying the handshake indefinitely. A

long delay might frustrate users or exceed network timeouts (PDP, PEP or otherwise).

The IMC should implement this function if it wants to receive messages. Simple IMCs that only
send messages need not implement this function. The IMC MUST NOT ever modify the buffer

contents and MUST NOT access the buffer after TNC_IMC_ReceiveMessage has returned. If

the IMC wants to retain the message, it should copy it before returning from

TNC_IMC_ReceiveMessage.

In the imcID parameter, the TNCC MUST pass the IMC ID value provided to

TNC_IMC_Initialize. In the connectionID parameter, the TNCC MUST pass a valid

network connection ID. In the message parameter, the TNCC MUST pass a reference to a buffer

containing the message being delivered to the IMC. In the messageLength parameter, the

TNCC MUST pass the number of octets in the message. If the value of the messageLength

parameter is zero (0), the message parameter may be NULL with platform bindings that have

such a value. In the messageType parameter, the TNCC MUST pass the type of the message.

This value MUST match one of the TNC_MessageType values previously supplied by the IMC to

the TNCC in the IMC’s most recent call to TNC_TNCC_ReportMessageTypes. IMCs MAY check

these parameters to make sure they are valid and return an error if not, but IMCs are not required
to make these checks.

Input Parameter Description

imcID IMC ID assigned by TNCC

connectionID Network connection ID on which message was
received

message Reference to buffer containing message

messageLength Number of octets in message

messageType Message type of message

Result Code Condition

TNC_RESULT_SUCCESS Success

TNC_RESULT_NOT_INITIALIZED TNC_IMC_Initialize has not been called

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_RESULT_OTHER Unspecified non-fatal error

TNC_RESULT_FATAL Unspecified fatal error

Other result codes Other non-fatal error

3.7.5 TNC_IMC_BatchEnding (OPTIONAL)

TNC_Result TNC_IMC_BatchEnding(
/*in*/ TNC_IMCID imcID,
/*in*/ TNC_ConnectionID connectionID);

Description:

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 28 of 74
 TCG PUBLISHED

The TNC Client calls this function to notify IMCs that all IMV messages received in a batch have
been delivered and this is the IMC’s last chance to send a message in the batch of IMC
messages currently being collected. An IMC MAY implement this function if it wants to perform
some actions after all the IMV messages received during a batch have been delivered (using

TNC_IMC_ReceiveMessage). This is especially useful for IMCs that have included a wildcard in

the list of message types reported using TNC_TNCC_ReportMessageTypes.

An IMC MAY call TNC_TNCC_SendMessage from this function. As with all IMC functions, the

IMC SHOULD NOT wait a long time before returning from TNC_IMC_BatchEnding. To do

otherwise would risk delaying the handshake indefinitely. A long delay might frustrate users or
exceed network timeouts (PDP, PEP or otherwise).

In the imcID parameter, the TNCC MUST pass the IMC ID value provided to

TNC_IMC_Initialize. In the connectionID parameter, the TNCC MUST pass a valid

network connection ID. IMCs MAY check these values to make sure they are valid and return an
error if not, but IMCs are not required to make these checks.

Input Parameter Description

imcID IMC ID assigned by TNCC

connectionID Network connection ID for which a batch is ending

Result Code Condition

TNC_RESULT_SUCCESS Success

TNC_RESULT_NOT_INITIALIZED TNC_IMC_Initialize has not been called

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_RESULT_OTHER Unspecified non-fatal error

TNC_RESULT_FATAL Unspecified fatal error

Other result codes Other non-fatal error

3.7.6 TNC_IMC_Terminate (OPTIONAL)

TNC_Result TNC_IMC_Terminate(
/*in*/ TNC_IMCID imcID);

Description:

The TNC Client calls this function to close down the IMC when all work is complete or the IMC

reports TNC_RESULT_FATAL. Once a call to TNC_IMC_Terminate is made, the TNC Client

MUST NOT call the IMC except to call TNC_IMC_Initialize (which may not succeed if the

IMC cannot reinitialize itself). Even if the IMC returns an error from this function, the TNC Client
MAY continue with its unload or shutdown procedure.

In the imcID parameter, the TNCC MUST pass the IMC ID value provided to

TNC_IMC_Initialize. IMCs MAY check if imcID matches the value previously passed to

TNC_IMC_Initialize and return TNC_RESULT_INVALID_PARAMETER if not, but they are not

required to make this check.

Input Parameter Description

imcID IMC ID assigned by TNCC

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 29 of 74
 TCG PUBLISHED

Result Code Condition

TNC_RESULT_SUCCESS Success

TNC_RESULT_NOT_INITIALIZED TNC_IMC_Initialize has not been called

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_RESULT_OTHER Unspecified non-fatal error

TNC_RESULT_FATAL Unspecified fatal error

Other result codes Other non-fatal error

3.8 TNC Client Functions
These functions are implemented by the TNC Client and called by the IMC.

3.8.1 TNC_TNCC_ReportMessageTypes (MANDATORY)

TNC_Result TNC_TNCC_ReportMessageTypes(
/*in*/ TNC_IMCID imcID,
/*in*/ TNC_MessageTypeList supportedTypes,
/*in*/ TNC_UInt32 typeCount);

Description:

An IMC calls this function to inform a TNCC about the set of message types the IMC is able to

receive. Often, the IMC will call this function from TNC_IMC_Initialize. With the Windows

DLL binding or UNIX/Linux Dynamic Linkage binding, TNC_TNCC_ReportMessageTypes will

typically be called from TNC_IMC_ProvideBindFunction since an IMC cannot call the TNCC

with those platform bindings until TNC_IMC_ProvideBindFunction is called. A list of message

types is contained in the supportedTypes parameter. The number of types in the list is

contained in the typeCount parameter. If the value of the typeCount parameter is zero (0), the

supportedTypes parameter may be NULL with platform bindings that have such a value. In the

imcID, the IMC MUST pass the value provided to TNC_IMC_Initialize. TNCCs MAY check if

imcID matches the value previously passed to TNC_IMC_Initialize and return

TNC_RESULT_INVALID_PARAMETER if not, but they are not required to make this check.

All TNC Clients MUST implement this function. The TNC Client MUST NOT ever modify the list of

message types and MUST NOT access this list after TNC_TNCC_ReportMessageTypes has

returned. Generally, the TNC Client will copy the contents of this list before returning from this
function. TNC Clients MUST support any message type.

Note that although all TNC Clients must implement this function, some IMCs may never call it if
they don’t support receiving any message types. This is acceptable. In such a case, the TNC
Client MUST NOT deliver any messages to the IMC.

If an IMC requests a message type whose vendor ID is TNC_VENDORID_ANY and whose subtype

is TNC_SUBTYPE_ANY it will receive all messages with any message type. This message type is

0xffffffff. If an IMC requests a message type whose vendor ID is NOT TNC_VENDORID_ANY

and whose subtype is TNC_SUBTYPE_ANY, it will receive all messages with the specified vendor

ID and any subtype. If an IMC calls TNC_TNCC_ReportMessageTypes more than once, the

message type list supplied in the latest call supplants the message type lists supplied in earlier
calls.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 30 of 74
 TCG PUBLISHED

Input Parameter Description

imcID IMC ID assigned by TNCC

supportedTypes Reference to list of message types supported by
IMC

typeCount Number of message types supported by IMC

Result Code Condition

TNC_RESULT_SUCCESS Success

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_RESULT_OTHER Unspecified non-fatal error

TNC_RESULT_FATAL Unspecified fatal error

Other result codes Other non-fatal error

3.8.2 TNC_TNCC_SendMessage (MANDATORY)

TNC_Result TNC_TNCC_SendMessage(
/*in*/ TNC_IMCID imcID,
/*in*/ TNC_ConnectionID connectionID,
/*in*/ TNC_BufferReference message,
/*in*/ TNC_UInt32 messageLength,
/*in*/ TNC_MessageType messageType);

Description:

An IMC calls this function to give a message to the TNCC for delivery. The message is contained

in the buffer referenced by the message parameter and contains the number of octets (bytes)

indicated by the messageLength parameter. If the value of the messageLength parameter is

zero (0), the message parameter may be NULL with platform bindings that have such a value.

The type of the message is indicated by the messageType parameter. In the imcID parameter,

the IMC MUST pass the value provided to TNC_IMC_Initialize. In the connectionID

parameter, the IMC MUST pass a valid network connection ID. TNCCs MAY check these values
to make sure they are valid and return an error if not, but TNCCs are not required to make these
checks.

All TNC Clients MUST implement this function. The TNC Client MUST NOT ever modify the

buffer contents and MUST NOT access the buffer after TNC_TNCC_SendMessage has returned.

The TNC Client will typically copy the message out of the buffer, queue it up for delivery, and
return from this function.

The IMC MUST NOT call this function unless it has received a call to

TNC_IMC_BeginHandshake, TNC_IMC_ReceiveMessage, or TNC_IMC_BatchEnding for

this connection and the IMC has not yet returned from that function. If the IMC violates this

prohibition, the TNCC SHOULD return TNC_RESULT_ILLEGAL_OPERATION. If an IMC really

wants to communicate with an IMV at another time, it should call

TNC_TNCC_RequestHandshakeRetry.

Note that a TNCC or TNCS MAY cut off IMC-IMV communications at any time for any reason,
including limited support for long conversations in underlying protocols, user or administrator

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 31 of 74
 TCG PUBLISHED

intervention, or policy. If this happens, the TNCC will return TNC_RESULT_ILLEGAL_OPERATION

from TNC_TNCC_SendMessage.

The TNC Client MUST support any message type. However, the IMC MUST NOT specify a
message type whose vendor ID is 0xffffff or whose subtype is 0xff. These values are reserved for
use as wild cards, as described in section 3.8.1. If the IMC violates this prohibition, the TNCC

SHOULD return TNC_RESULT_INVALID_PARAMETER.

Input Parameter Description

imcID IMC ID assigned by TNCC

connectionID Network connection ID on which message should
be sent

message Reference to buffer containing message

messageLength Number of octets in message

messageType Message type of message

Result Code Condition

TNC_RESULT_SUCCESS Success

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_RESULT_ILLEGAL_OPERATION Message send attempted at illegal time

TNC_RESULT_OTHER Unspecified non-fatal error

TNC_RESULT_FATAL Unspecified fatal error

Other result codes Other non-fatal error

3.8.3 TNC_TNCC_RequestHandshakeRetry (MANDATORY)

TNC_Result TNC_TNCC_RequestHandshakeRetry(
/*in*/ TNC_IMCID imcID,
/*in*/ TNC_ConnectionID connectionID,
/*in*/ TNC_RetryReason reason);

Description:

An IMC calls this function to ask a TNCC to retry an Integrity Check Handshake. The IMC MUST

pass its IMC ID as the imcID parameter, a network connection ID as the connectionID

parameter, and one of the handshake retry reasons listed in section 3.5.5 as the reason

parameter. If the network connection ID is TNC_CONNECTIONID_ANY, then the IMC requests an

Integrity Check Handshake retry on all current network connections.

TNCCs MAY check the parameters to make sure they are valid and return an error if not, but

TNCCs are not required to make these checks. The reason parameter explains why the IMC is

requesting a handshake retry. The TNCC MAY use this in deciding whether to attempt the
handshake retry. As noted in section 2.10.3, TNCCs are not required to honor IMC requests for
handshake retry (especially since handshake retry may not be possible or may interrupt network
connectivity). An IMC MAY call this function at any time, even if an Integrity Check Handshake is
currently underway. This is useful if the IMC suddenly gets important information but has already
finished its dialog with the IMV, for instance. As always, the TNCC is not required to honor the
request for handshake retry.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 32 of 74
 TCG PUBLISHED

If the TNCC cannot attempt the handshake retry, it SHOULD return the result code

TNC_RESULT_CANT_RETRY. If the TNCC could attempt to retry the handshake but chooses not

to, it SHOULD return the result code TNC_RESULT_WONT_RETRY. If the TNCC intends to retry

the handshake, it SHOULD return the result code TNC_RESULT_SUCCESS. The IMC MAY use

this information in displaying diagnostic and progress messages.

Input Parameter Description

imcID IMC ID assigned by TNCC

connectionID Network connection ID for which handshake retry is
requested

reason Reason why handshake retry is requested

Result Code Condition

TNC_RESULT_SUCCESS TNCC intends to retry the handshake

TNC_RESULT_CANT_RETRY TNCC cannot attempt the handshake retry

TNC_RESULT_WONT_RETRY TNCC won’t attempt the handshake retry

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_RESULT_OTHER Unspecified non-fatal error

TNC_RESULT_FATAL Unspecified fatal error

Other result codes Other non-fatal error

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 33 of 74
 TCG PUBLISHED

4 Platform Bindings
As noted above, IF-IMC is a platform-independent API. It is designed to support almost any
platform. In order to ensure compatibility within a single platform, this section defines how IF-IMC
SHOULD be implemented on specific platforms. Additional platform bindings will be defined later.

4.1 Microsoft Windows DLL Platform Binding
Microsoft Windows is a popular platform with many variations. This binding does not support 16-
bit Windows (Windows 3.X and Windows for Workgroups). It does support Windows XP,
Windows CE, Windows NT, Windows 98, Windows Me, Windows 95, 64-bit Windows, and all
other currently known versions of Windows.

Implementations on one of these platforms SHOULD use this binding when possible for
maximum compatibility with other IMCs and TNC Clients on the platform. However, some
languages (such as Java) cannot easily implement or load DLLs. Implementations in such a
language may choose not to use this binding or may write custom code to support this binding.

4.1.1 Finding, Loading, and Unloading IMCs
One factor in Windows’ success has been the ease with which software can be installed and
configured. However, this can also lead to security problems if untrusted users install unsafe
software. We retain this ease of configuration while providing some protection against unsafe
software. Use of the Trusted Platform Module will increase the protection against unsafe software
configuration.

With the Microsoft Windows DLL platform binding, each IMC is implemented as a DLL. When the
DLL is installed, it is stored in a directory that can only be accessed by privileged users. The full
path of the DLL is stored in a well-known registry key that can only be changed by privileged

users. The TNC Client gets the value of this key and loads the IMCs using the LoadLibrary

system call. Then it uses the GetProcAddress function call to access the IMC’s functions, as

described in section 4.1.2. The TNCC MUST always call the TNC_IMC_Initialize function

first. When it is done using an IMC, the TNC Client calls TNC_IMC_Terminate and then unloads

the IMC DLL using the FreeLibrary system call. The TNCC SHOULD listen for changes to the

well-known registry key so that it can load and unload IMCs dynamically. However, the TNCC
SHOULD delay before making changes based on registry key changes since it’s common for
these changes to come in batches within a few seconds during an install process. And the TNCC
MAY not listen for such changes at all.

On some versions of Windows (including at least Windows 95, Windows 98, and Windows ME),
there is no such thing as a privileged user. This means that any code executed with the privileges
of any user can modify the registry key that lists the installed IMCs. However, this problem is not
unique to the IF-IMC API. It’s commonly known that running malicious code on such an operating
system may result in complete compromise of the machine. The chances of such an attack can
be reduced through best practices like well-patched software, strong host intrusion prevention,
and antivirus protection. The TNC architecture supports and encourages such measures. IF-IMC
helps ensure that these measures are in place. IF-PTS allows the TNCS to reliably and securely
detect compromised machines through use of the TPM. But upgrading to a more secure version
of Windows is also recommended.

As described in the Security Considerations section, loading an IMC DLL into the TNCC’s
address space can compromise the TNCC and other IMCs if the IMC DLL is later found to be
untrustworthy. Also, an unstable IMC can crash the whole TNCC. One way to address this
problem is to have the TNCC launch a new “child” process for each IMC, have the child process
load the IMC DLL, and then have the TNCC communicate with the child processes carefully. If an
IMC DLL crashes or is untrustworthy, the damage it can do is limited. The TNCC may use this
approach but is not required to do so.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 34 of 74
 TCG PUBLISHED

4.1.2 Dynamic Function Binding

The Microsoft Windows DLL platform binding does support dynamic function binding. To
determine whether an IMC function is defined, a TNC Client will pass the function name to

GetProcAddress. If the result is NULL, the function is not defined. Otherwise, the function is

defined and the TNCC can call it using the function pointer returned. This is common practice on
Windows.

A similar mechanism is used to allow an IMC to determine whether a TNCC function is defined. In
fact, this mechanism is the only way that the IMC can call a TNCC function with this platform

binding. A platform-specific mandatory IMC function named TNC_IMC_ProvideBindFunction

is defined below. For instructions on how this function is used, see its description.

IMC and TNCC functions can be implemented in and called from many languages. With C++,
extern “C” should be used to ensure that C linkage conventions are used for IMC and TNCC
functions exposed through this API.

4.1.3 Threading

IMC DLLs are not required to be thread-safe. Therefore, the TNC Client MUST NOT call an IMC
DLL from one thread when another TNC Client thread is in the middle of a call to the same IMC
DLL. However, since more than one TNC Client may be running at once on a single machine
(rare, but possible), any IMC DLL MUST be prepared to be loaded in multiple processes at once
and to have these processes issue overlapping calls to the DLL.

The IMC DLL MAY create threads. The TNC Client MUST be thread-safe. This allows the IMC
DLL to do work in background threads and call the TNC Client when it wants to request an
Integrity Check Handshake retry (for instance).

All IMC DLL functions SHOULD return promptly. Otherwise, the TNC Client may get bogged
down waiting for a response from the IMC. A long delay might frustrate users or exceed network
timeouts (PDP, PEP or otherwise).

4.1.4 Platform-Specific Bindings for Basic Types
With the Microsoft Windows DLL platform binding, the basic data types defined in the IF-IMC
abstract API are mapped as follows:

typedef unsigned long TNC_UInt32;

The TNC_UInt32 type is mapped to a four byte unsigned value.

typedef unsigned char *TNC_BufferReference;

The TNC_BufferReference type is mapped to a pointer. The value NULL is allowed for a

TNC_BufferReference only where explicitly permitted in this specification.

4.1.5 Platform-Specific Bindings for Derived Types

With the Microsoft Windows DLL platform binding, the platform-specific derived data types
defined in the IF-IMC abstract API are mapped as follows:

typedef TNC_MessageType *TNC_MessageTypeList;

The TNC_MessageTypeList type is mapped to a pointer. The value NULL is allowed for a

TNC_MessageTypeList only where explicitly permitted in this specification.

4.1.6 Additional Platform-Specific Derived Types

The Microsoft Windows DLL platform binding for the IF-IMC API defines several additional
derived data types.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 35 of 74
 TCG PUBLISHED

4.1.6.1 Function Pointers

Function pointer types are defined for all the functions contained in the abstract API and platform

binding. This makes it easy to cast function pointers returned by GetProcAddress or

TNC_TNCC_BindFunction to the right type and ensure that the compiler performs type

checking on arguments.

typedef TNC_Result (*TNC_IMC_InitializePointer)(
 TNC_IMCID imcID,
 TNC_Version minVersion,
 TNC_Version maxVersion,
 TNC_Version *pOutActualVersion);

typedef TNC_Result (*TNC_IMC_NotifyConnectionChangePointer)(
 TNC_IMCID imcID,
 TNC_ConnectionID connectionID,
 TNC_ConnectionState newState);

typedef TNC_Result (*TNC_IMC_BeginHandshakePointer)(
 TNC_IMCID imcID,
 TNC_ConnectionID connectionID);

typedef TNC_Result (*TNC_IMC_ReceiveMessagePointer)(
 TNC_IMCID imcID,
 TNC_ConnectionID connectionID,
 TNC_BufferReference message,
 TNC_UInt32 messageLength,
 TNC_MessageType messageType);

typedef TNC_Result (*TNC_IMC_BatchEndingPointer)(
 TNC_IMCID imcID,
 TNC_ConnectionID connectionID);

typedef TNC_Result (*TNC_IMC_TerminatePointer)(
 TNC_IMCID imcID);

typedef TNC_Result (*TNC_TNCC_ReportMessageTypesPointer)(
 TNC_IMCID imcID,
 TNC_MessageTypeList supportedTypes,
 TNC_UInt32 typeCount);

typedef TNC_Result (*TNC_TNCC_SendMessagePointer)(
 TNC_IMCID imcID,
 TNC_ConnectionID connectionID,
 TNC_BufferReference message,
 TNC_UInt32 messageLength,
 TNC_MessageType messageType);

typedef TNC_Result (*TNC_TNCC_RequestHandshakeRetryPointer)(
 TNC_IMCID imcID,
 TNC_ConnectionID connectionID,
 TNC_RetryReason reason);

typedef TNC_Result (*TNC_TNCC_BindFunctionPointer)(
 TNC_IMCID imcID,
 char *functionName,
 void **pOutfunctionPointer);

typedef TNC_Result (*TNC_IMC_ProvideBindFunctionPointer)(
 TNC_IMCID imcID,
 TNC_TNCC_BindFunctionPointer bindFunction);

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 36 of 74
 TCG PUBLISHED

4.1.7 Platform-Specific IMC Functions

The Microsoft Windows DLL platform binding for the IF-IMC API defines one additional function
that MUST be implemented by IMCs implementing this platform binding.

4.1.7.1 TNC_IMC_ProvideBindFunction (MANDATORY)

TNC_Result TNC_IMC_ProvideBindFunction(
/*in*/ TNC_IMCID imcID,
/*in*/ TNC_TNCC_BindFunctionPointer bindFunction);

Description:

IMCs implementing the Microsoft Windows DLL platform binding MUST define this additional
platform-specific function. The TNC Client MUST call the function immediately after calling

TNC_IMC_Initialize to provide a pointer to the TNCC bind function. The IMC can then use

the TNCC bind function to obtain pointers to any other TNCC functions.

In the imcID parameter, the TNCC MUST pass the value provided to TNC_IMC_Initialize. In

the bindFunction parameter, the TNCC MUST pass a pointer to the TNCC bind function. IMCs

MAY check if imcID matches the value previously passed to TNC_IMC_Initialize and return

TNC_RESULT_INVALID_PARAMETER if not, but they are not required to make this check.

Input Parameter Description

imcID IMC ID assigned by TNCC

bindFunction Pointer to TNC_TNCC_BindFunction

Result Code Condition

TNC_RESULT_SUCCESS Success

TNC_RESULT_NOT_INITIALIZED TNC_IMC_Initialize has not been called

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_RESULT_OTHER Unspecified non-fatal error

TNC_RESULT_FATAL Unspecified fatal error

Other result codes Other non-fatal error

4.1.8 Platform-Specific TNC Client Functions
The Microsoft Windows DLL platform binding for the IF-IMC API defines one additional function
that MUST be implemented by TNC Clients implementing this platform binding.

4.1.8.1 TNC_TNCC_BindFunction (MANDATORY)

TNC_Result TNC_TNCC_BindFunction(
/*in*/ TNC_IMCID imcID,
/*in*/ char *functionName,
/*out*/ void **pOutFunctionPointer);

Description:

TNC Clients implementing the Microsoft Windows DLL platform binding MUST define this
additional platform-specific function. An IMC can use this function to obtain pointers to other

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 37 of 74
 TCG PUBLISHED

TNCC functions. To obtain a pointer to a TNCC function, an IMC calls

TNC_TNCC_BindFunction. The IMC obtains a pointer to TNC_TNCC_BindFunction from

TNC_IMC_ProvideBindFunction.

The IMC MUST set the imcID parameter to the IMC ID value provided to

TNC_IMC_Initialize. TNCCs MAY check if imcID matches the value previously passed to

TNC_IMC_Initialize and return TNC_RESULT_INVALID_PARAMETER if not, but they are not

required to make this check. The IMC MUST set the functionName parameter to a pointer to a

C string identifying the function whose pointer is desired (i.e. "TNC_TNCC_SendMessage"). The

IMC MUST set the pOutFunctionPointer parameter to a pointer to storage into which the

desired function pointer will be stored. If the TNCC does not define the requested function, NULL

MUST be stored at pOutFunctionPointer. Otherwise, a pointer to the requested function MUST be

stored at pOutFunctionPointer. In either case, TNC_RESULT_SUCCESS SHOULD be returned.

Once an IMC obtains a pointer to a particular function, the TNCC MUST always return the same
function pointer value to that IMC for that function name. This requirement does not apply across
IMC termination and reinitialization.

Input Parameter Description

imcID IMC ID assigned by TNCC

functionName Name of function whose pointer is requested

Output Parameter Description

pOutFunctionPointer Requested function pointer

Result Code Condition

TNC_RESULT_SUCCESS Success

TNC_RESULT_OTHER Unspecified non-fatal error

TNC_RESULT_FATAL Unspecified fatal error

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

Other result codes Other non-fatal error

4.1.9 Well-known Registry Key
As discussed above, a well-known registry key is used by the TNCC to load IMCs. For Windows
platforms, this key is defined within the HKEY_LOCAL_MACHINE hive as follows. The TNCC
should also load IMCs from the equivalent path in HKEY_CURRENT_USER hive in addition to
HKLM in order to support per-user software profiles.

• HKEY_LOCAL_MACHINE

� Software

� Trusted Computing Group

� TNC

� IMCs

� [Human readable name of IMC], 0..n

Each IMC key contains an (unordered) set of values, as follows:

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 38 of 74
 TCG PUBLISHED

• the value “Path” is a REG_SZ String which contains the fully qualified path to an IMC DLL to
be loaded

• the optional value “Description” is a REG_SZ String which contains a vendor-specific human-
readable description of the IMC DLL

The name and description are for ease of administration and may be ignored by the TNCC,
except for human interface purposes; only the Path data matters. Duplicate paths are OK.
Additional values or keys may be present within the keys listed above. TNC Clients and IMCs
MUST ignore unrecognized values and keys.

An extension mechanism has been defined so that vendors can place vendor-specific keys or
values in the TNC key or any subkey without risking name collisions. The name of such a vendor-
specific key or value must begin with the vendor ID (as defined in section 3.2.3) of the vendor
who defined this extension. The vendor ID must be immediately followed in the name by an
underscore which may be followed by any string.

The manner in which these vendor-specific values are used is up to the vendor that defines such
a value. For instance, a TNC Client vendor with vendor ID 2 could specify that any IMC can
populate its key at install time with a value named 2_SupportPhone and that vendor’s TNC Client
can read this value and display it in the TNC Client’s status panel next to the IMC name. The only
requirement, as stated above, is that TNC Clients and IMCs MUST ignore unrecognized values
and keys.

4.2 UNIX/Linux Dynamic Linkage Platform Binding
UNIX and Linux operating systems are used for servers, desktops, and even embedded devices.
There are hundreds of varieties of UNIX and Linux dating back to the 1970s. One platform
binding cannot support them all. However, this binding supports all varieties of Linux that conform
to the Linux Standard Base 1.0.0 or later and all varieties of UNIX that conform to UNIX 98 or any
version of the Single UNIX Specification. This includes most varieties of UNIX and Linux currently
in use.

Implementations on one of these platforms SHOULD use this binding when possible for
maximum compatibility with other IMCs and TNC Clients on the platform. However, some
languages (such as Java) cannot easily implement or load shared libraries. Implementations in
such a language may choose not to use this binding or to write custom code to support this
binding.

4.2.1 Finding, Loading, and Unloading IMCs

With the UNIX/Linux Dynamic Linkage platform binding, each IMC is implemented as a
dynamically loaded executable file (also known as a shared object or DLL). When the IMC is
installed, its executable file should be stored in a directory that can only be accessed by

privileged users. Then an entry is created in the /etc/tnc_config file that gives the full path of

the executable file. See section 4.2.3 for details on the format of this file.

The TNC Client opens the /etc/tnc_config file, reads the entries in the file, and determines

which of them should be loaded (using optional local configuration). For each IMC to be loaded,

the TNC Client passes the full path of the executable file to the dlopen system call. The value

passed as the mode parameter to the dlopen system call is platform-specific and not specified

here. The TNC Client uses the dlsym function call to access the IMC’s functions, as described in

section 4.1.2. The TNCC MUST always call the TNC_IMC_Initialize function first. When it is

done using an IMC, the TNC Client calls TNC_IMC_Terminate and then unloads the IMC

executable file using the dlclose system call.

If the TNCC receives a HUP signal (which may be sent with the kill command), the TNCC

SHOULD check the /etc/tnc_config file for changes and load or unload IMCs as needed to

match the latest list.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 39 of 74
 TCG PUBLISHED

As described in the Security Considerations section, loading an IMC into the TNCC’s address
space can compromise the TNCC and other IMCs if the IMC is later found to be untrustworthy.
Also, an unstable IMC can crash the whole TNCC. One way to address this problem is to have
the TNCC launch a new “child” process for each IMC, have the child process load the IMC, and
then have the TNCC communicate with the child processes carefully. If an IMC crashes or is
untrustworthy, the damage it can do is limited. The TNCC may use this approach but is not
required to do so.

4.2.2 Dynamic Function Binding
The UNIX/Linux Dynamic Linkage platform binding does support dynamic function binding. To
determine whether an IMC function is defined, a TNC Client will pass the function name to

dlsym. If the result is NULL, the function is not defined. Otherwise, the function is defined and the

TNCC can call it using the function pointer returned. This is common practice on UNIX and Linux.

A similar mechanism is used to allow an IMC to determine whether a TNCC function is defined. In
fact, this mechanism is the only way that the IMC can call a TNCC function with this platform

binding. A platform-specific mandatory IMC function named TNC_IMC_ProvideBindFunction

is defined below. For instructions on how this function is used, see its description.

IMC and TNCC functions can be implemented in and called from many languages. With C++,
extern “C” should be used to ensure that C linkage conventions are used for IMC and TNCC
functions exposed through this API.

4.2.3 Format of /etc/tnc_config

The /etc/tnc_config file specifies the set of IMCs available for TNCCs to load. TNCCs are

not required to load these IMCs. A TNCC may be configured to ignore this file, load any subset of
the IMCs listed here, load a superset of those IMCs, or (most common) load the IMCs in the list.
This provides a simple, standard way for the list of IMCs to be specified but allows TNCCs to be
configured to only load a particular set of trusted IMCs.

The /etc/tnc_config file is a UTF-8 file. However, TNCCs are only required to support US-

ASCII characters (a subset of UTF-8). If a TNCC encounters a character that is not US-ASCII and
the TNCC can not process UTF-8 properly, the TNCC SHOULD indicate an error and not load the
file at all. In fact, the TNCC SHOULD respond to any problem with the file by indicating an error
and not loading the file at all.

All characters specified here are specified in standard Unicode notation (U+nnnn where nnnn are
hexadecimal characters indicating the code points.

The /etc/tnc_config file is composed of zero or more lines. Each line ends in U+000A. No

other control characters (characters with the Unicode category Cc) are permitted in the file.

A line that begins with U+0023 is a comment. All other characters on the line should be ignored.
A line that does not contain any characters should also be ignored.

A line that begins with “IMC ” (U+0049, U+004D, U+0043, U+0020) specifies an IMC that may be
loaded. The next character MUST be U+0022 (QUOTATION MARK). This MUST be followed by
a human-readable IMC name (potentially zero length) and another U+0022 character
(QUOTATION MARK). Of course, the IMC name cannot contain a U+0022 (QUOTATION
MARK). But it can contain spaces or other characters. After the U+0022 that terminates the
human-readable name MUST come a space (U+0020) and then the full path of the IMC
executable file (up to but not including the U+000A that terminates the line). The path to the IMC
executable file MUST NOT be a partial path.

The /etc/tnc_config file must not contain IMCs with the same human-readable name. A

TNCC that encounters such a file SHOULD indicate the error and MAY not load the file at all. It
MAY also change the IMC names to make them unique. Identical full paths are permitted but the
TNCC MAY ignore entries with identical paths if they will cause problems for it.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 40 of 74
 TCG PUBLISHED

An extension mechanism has been defined so that vendors can place vendor-specific data in the

/etc/tnc_config file without risking conflicts. A line that contains such vendor-specific data

must begin with the vendor ID (as defined in section 3.2.3) of the vendor who defined this
extension. The vendor ID must be immediately followed in the name by an underscore which may
be followed by any string except control characters until the end of line (U+000A).

The internal format of this vendor-specific data and the manner in which it is to be used should be
specified by the vendor whose vendor ID is used to define the extension. For instance, a TNCC
vendor with vendor ID 2 could specify that any IMC can add a line at install time that begins with
2_SupportPhoneIMC, then the IMC’s human-readable name and the IMC vendor’s support
telephone number. The defining vendor’s TNCC (or any other TNCC) can read this phone
number and display it in the TNCC’s status panel next to the IMC name.

TNCCs and IMCs SHOULD ignore unrecognized vendor-specific data. This recommendation is
backwards-compatible with the recommendation in IF-IMC 1.0 for TNCCs and IMCs to ignore

lines in /etc/tnc_config with unrecognized syntax.

A line that does not match the comment, empty, imc, or vendor productions below SHOULD be
ignored by a TNCC and IMCs that are using the Linux/UNIX Platform Binding unless otherwise
specified by a future version of this binding. This provides for future extensions to this file format.

Here is a specification of the file format using ABNF as defined in [3].

tnc_config = *line
line = (comment / empty / imc / java-imc / imv / java-imv / vendor /
other) %x0A
comment = %x23 *(%x01-09 / %x0B-22 / %x24-1FFFFF)
empty = ""
imc = %x49.4D.43.20.22 name %x22.20 path
java-imc = %x4a.41.56.41.2d.49.4D.43.20.22 name %x22.20 class %x20 path
imv = %x49.4D.56.20.22 name %x22.20 path
java-imv = %x4a.41.56.41.2d.49.4D.56.20.22 name %x22.20 class %x20 path
name = *(%x01-09 / %x0B-21 / %x23-1FFFFF)
class = *(%x01-09 / %x0B-1F / %x21-1FFFFF)
path = *(%x01-09 / %x0B-1FFFFF)
digit = (%x30-39)
vendor = *digit %x5f *(%x01-09 / %x0B-1FFFFF)
other = 1*(%x01-09 / %x0B-1FFFFF) ; But match more specific rules first

Note that lines that match the java-imc, imv, and java-imv productions are ignored for the

purposes of the Linux/UNIX Platform Binding for IF-IMC. Note also that the other production is

only employed if no other production matches a line.

Here is a sample file specifying one IMC named “AV” located at /usr/bin/myav/av.so.

Simple TNC config file

IMC "AV" /usr/bin/myav/av.so

4.2.4 Threading
IMC executable files are not required to be thread-safe. Therefore, the TNC Client MUST NOT
call an IMC from one thread when another TNC Client thread is in the middle of a call to the same
IMC. However, since more than one TNC Client may be running at once on a single machine
(rare, but possible), any IMC MUST be prepared to be loaded in multiple processes at once and
to have these processes issue overlapping calls to the IMC.

The IMC MAY create threads. The TNC Client MUST be thread-safe. This allows the IMC to do
work in background threads and to call the TNC Client when it wants to request an Integrity

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 41 of 74
 TCG PUBLISHED

Check Handshake retry (for instance). Both the IMC and the TNC Client MUST use POSIX
threads (pthreads) for threading and synchronization to ensure compatibility.

All IMC functions SHOULD return promptly (preferably, within 100 ms or less). Otherwise, the
TNC Client may get bogged down waiting for a response from the IMC.

4.2.5 Platform-Specific Bindings for Basic Types

With the UNIX/Linux Dynamic Linkage platform binding, the basic data types defined in the IF-
IMC abstract API are mapped as follows:

typedef unsigned long TNC_UInt32;

The TNC_UInt32 type is mapped to a four byte unsigned value.

typedef unsigned char *TNC_BufferReference;

The TNC_BufferReference type is mapped to a pointer. The value NULL is allowed for a

TNC_BufferReference only where explicitly permitted in this specification.

4.2.6 Platform-Specific Bindings for Derived Types
With the UNIX/Linux Dynamic Linkage platform binding, the platform-specific derived data types
defined in the IF-IMC abstract API are mapped as follows:

typedef TNC_MessageType *TNC_MessageTypeList;

The TNC_MessageTypeList type is mapped to a pointer. The value NULL is allowed for a

TNC_MessageTypeList only where explicitly permitted in this specification.

4.2.7 Additional Platform-Specific Derived Types
The UNIX/Linux Dynamic Linkage platform binding for the IF-IMC API defines several additional
derived data types.

4.2.7.1 Function Pointers

Function pointer types are defined for all the functions contained in the abstract API and platform

binding. This makes it easy to cast function pointers returned by dlsym or

TNC_TNCC_BindFunction to the right type and ensure that the compiler performs type

checking on arguments.

typedef TNC_Result (*TNC_IMC_InitializePointer)(
 TNC_IMCID imcID,
 TNC_Version minVersion,
 TNC_Version maxVersion,
 TNC_Version *pOutActualVersion);

typedef TNC_Result (*TNC_IMC_NotifyConnectionChangePointer)(
 TNC_IMCID imcID,
 TNC_ConnectionID connectionID,
 TNC_ConnectionState newState);

typedef TNC_Result (*TNC_IMC_BeginHandshakePointer)(
 TNC_IMCID imcID,
 TNC_ConnectionID connectionID);

typedef TNC_Result (*TNC_IMC_ReceiveMessagePointer)(
 TNC_IMCID imcID,
 TNC_ConnectionID connectionID,
 TNC_BufferReference message,
 TNC_UInt32 messageLength,
 TNC_MessageType messageType);

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 42 of 74
 TCG PUBLISHED

typedef TNC_Result (*TNC_IMC_BatchEndingPointer)(
 TNC_IMCID imcID,
 TNC_ConnectionID connectionID);

typedef TNC_Result (*TNC_IMC_TerminatePointer)(
 TNC_IMCID imcID);

typedef TNC_Result (*TNC_TNCC_ReportMessageTypesPointer)(
 TNC_IMCID imcID,
 TNC_MessageTypeList supportedTypes,
 TNC_UInt32 typeCount);

typedef TNC_Result (*TNC_TNCC_SendMessagePointer)(
 TNC_IMCID imcID,
 TNC_ConnectionID connectionID,
 TNC_BufferReference message,
 TNC_UInt32 messageLength,
 TNC_MessageType messageType);

typedef TNC_Result (*TNC_TNCC_RequestHandshakeRetryPointer)(
 TNC_IMCID imcID,
 TNC_ConnectionID connectionID,
 TNC_RetryReason reason);

typedef TNC_Result (*TNC_TNCC_BindFunctionPointer)(
 TNC_IMCID imcID,
 char *functionName,
 void **pOutfunctionPointer);

typedef TNC_Result (*TNC_IMC_ProvideBindFunctionPointer)(
 TNC_IMCID imcID,
 TNC_TNCC_BindFunctionPointer bindFunction);

4.2.8 Platform-Specific IMC Functions

The UNIX/Linux Dynamic Linkage platform binding for the IF-IMC API defines one additional
function that MUST be implemented by IMCs implementing this platform binding.

4.2.8.1 TNC_IMC_ProvideBindFunction (MANDATORY)

TNC_Result TNC_IMC_ProvideBindFunction(
/*in*/ TNC_IMCID imcID,
/*in*/ TNC_TNCC_BindFunctionPointer bindFunction);

Description:

IMCs implementing the UNIX/Linux Dynamic Linkage platform binding MUST define this
additional platform-specific function. The TNC Client MUST call the function immediately after

calling TNC_IMC_Initialize to provide a pointer to the TNCC bind function. The IMC can then

use the TNCC bind function to obtain pointers to any other TNCC functions.

In the imcID parameter, the TNCC MUST pass the value provided to TNC_IMC_Initialize. In

the bindFunction parameter, the TNCC MUST pass a pointer to the TNCC bind function. IMCs

MAY check if imcID matches the value previously passed to TNC_IMC_Initialize and return

TNC_RESULT_INVALID_PARAMETER if not, but they are not required to make this check.

Input Parameter Description

imcID IMC ID assigned by TNCC

bindFunction Pointer to TNC_TNCC_BindFunction

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 43 of 74
 TCG PUBLISHED

Result Code Condition

TNC_RESULT_SUCCESS Success

TNC_RESULT_NOT_INITIALIZED TNC_IMC_Initialize has not been called

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

TNC_RESULT_OTHER Unspecified non-fatal error

TNC_RESULT_FATAL Unspecified fatal error

Other result codes Other non-fatal error

4.2.9 Platform-Specific TNC Client Functions
The UNIX/Linux Dynamic Linkage platform binding for the IF-IMC API defines one additional
function that MUST be implemented by TNC Clients implementing this platform binding.

4.2.9.1 TNC_TNCC_BindFunction (MANDATORY)

TNC_Result TNC_TNCC_BindFunction(
/*in*/ TNC_IMCID imcID,
/*in*/ char *functionName,
/*out*/ void **pOutFunctionPointer);

Description:

TNC Clients implementing the UNIX/Linux Dynamic Linkage platform binding MUST define this
additional platform-specific function. An IMC can use this function to obtain pointers to other
TNCC functions. To obtain a pointer to a TNCC function, an IMC calls

TNC_TNCC_BindFunction. The IMC obtains a pointer to TNC_TNCC_BindFunction from

TNC_IMC_ProvideBindFunction.

The IMC MUST set the imcID parameter to the IMC ID value provided to

TNC_IMC_Initialize. TNCCs MAY check if imcID matches the value previously passed to

TNC_IMC_Initialize and return TNC_RESULT_INVALID_PARAMETER if not, but they are not

required to make this check. The IMC MUST set the functionName parameter to a pointer to a

C string identifying the function whose pointer is desired (i.e. "TNC_TNCC_SendMessage"). The

IMC MUST set the pOutFunctionPointer parameter to a pointer to storage into which the

desired function pointer will be stored. If the TNCC does not define the requested function, NULL

MUST be stored at pOutFunctionPointer. Otherwise, a pointer to the requested function MUST be

stored at pOutFunctionPointer. In either case, TNC_RESULT_SUCCESS SHOULD be returned.

Input Parameter Description

imcID IMC ID assigned by TNCC

functionName Name of function whose pointer is requested

Output Parameter Description

pOutFunctionPointer Requested function pointer

Result Code Condition

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 44 of 74
 TCG PUBLISHED

TNC_RESULT_SUCCESS Success

TNC_RESULT_OTHER Unspecified non-fatal error

TNC_RESULT_FATAL Unspecified fatal error

TNC_RESULT_INVALID_PARAMETER Invalid function parameter

Other result codes Other non-fatal error

4.3 Java Platform Binding
The Java Platform provides remarkable portability, allowing the same code to run on many
operating systems. It also includes sandboxing features that make it a popular choice for running
dynamically downloaded and perhaps only partially trusted code. There is a desire to support IF-
IMC on the Java Platform, especially to support dynamic download of IMCs and perhaps of the
TNCC. Therefore, the Java Platform Binding for IF-IMC has been developed.

At this time, the only versions of the Java Platform that are supported with the Java Platform
Binding for IF-IMC are the Java 2 Platform Standard Edition versions 1.4.2 and later. Other Java
Platform versions may be supported at a later time. Implementations of the IF-IMC specification
on the Java 2 Platform SHOULD use this binding when possible for maximum compatibility with
other IMCs and TNC Clients on the platform.

4.3.1 Object Orientation
The Java Platform Binding for IF-IMC is designed to take advantage of the Java Platform’s
support for object orientation. Three Java interfaces have been defined that correspond to the

kinds of objects inherent in the IF-IMC Abstract API: IMC, TNCC, and IMCConnection. The

functions described in the IF-IMC Abstract API have been mapped to methods in these
interfaces. Interfaces were used instead of classes to leave implementers the freedom to use

whatever class hierarchy they need or want. An additional TNCConstants interface has been

defined to contain constant values shared between IF-IMC and IF-IMV.

All IMCs that implement the Java Platform Binding for IF-IMC MUST implement the IMC interface.

All TNCCs that implement the Java Platform Binding for IF-IMC MUST implement the TNCC

interface and provide objects that implement the IMCConnection interface as needed. The

TNCC MUST also define all the interfaces in the IF-IMC API.

4.3.2 Exception Handling

The exception handling capabilities of the Java Platform provide greater robustness than the
result code mechanism used by the IF-IMC Abstract API since exceptions must be explicitly
ignored while result codes are ignored by default. Therefore, the Java Platform Binding for IF-IMC

defines a TNCException class that wraps the result codes defined in the IF-IMC Abstract API.

This class MUST be defined by all TNCCs.

4.3.3 Limited Privileges

The Java Platform has always included support for running code with limited privileges. With the
Java 2 Platform (JDK 1.2 and later), this is implemented with AccessControllers, Permissions,
and other components of the Java 2 Platform security architecture. These features are useful for
IF-IMC, where it may be desirable to dynamically download a TNCC and/or IMCs and limit what
this partially trusted code can do.

The Java Platform Binding for IF-IMC does not define any new Permissions. All IMCs loaded by
the TNCC are assumed to be trusted to call any TNCC methods and vice versa. However, this
does not mean that the TNCC and IMCs should completely trust each other.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 45 of 74
 TCG PUBLISHED

The Java 2 Platform does define many Permissions. Many system methods check to ensure that
calling code holds those permissions before allowing access. Since a TNCC may have more or
fewer privileges than an IMC if the TNCC and IMC were loaded from different CodeSources, a
Java TNCC and IMC cannot simply trust each other.

When a TNCC loads an IMC from any external source (one that is not delivered with the TNCC),
it MUST use a class loader that will determine and assign the appropriate permissions (such as
the URLClassLoader).

When an IMC calls a method of a class included in the TNCC, the TNCC code MUST recognize
that the IMC’s permissions may be much less than those of the TNCC. The code in the TNCC’s
called method will run with the intersection of the IMC’s permissions and the TNCC’s. To perform
privileged operations, the TNCC’s code MAY use a doPrivileged method to regain its normal
permissions and perform privileged actions. Alternatively, the TNCC’s code MAY queue data for
later processing by code with more permissions. In either case, the TNCC’s code MUST check
the IMC’s request and the arguments supplied very carefully. The IMC’s code MUST NOT be
trusted unless the TNCC knows that the IMC’s privileges are as great as the TNCC’s (as when
the IMC was loaded from the same CodeSource as the TNCC).

Likewise, when the TNCC calls a method of an IMC, the IMC code MUST recognize that the
TNCC’s permissions may be much less than those of the IMC. The code in the IMC’s called
method will run with the intersection of the IMC’s permissions and the TNCC’s. To perform
privileged operations, the IMC’s code MAY use a doPrivileged method to regain its normal
permissions and perform privileged actions. Alternatively, the IMC’s code MAY queue data for
later processing by code with more permissions. In either case, the IMC’s code MUST check the
TNCC’s call and the arguments supplied very carefully. The TNCC’s code MUST NOT be trusted.
The IMC MUST regard IF-M messages as untrusted unless the IMC can authenticate them in
some manner or the IMC determines that the TNCC can be trusted enough to perform the
operations requested by the IF-M messages. The simplest way to meet this last criterion is for the
IMC to only perform operations triggered by IMC messages in its receiveMessage method and to
do so without using doPrivileged. This will ensure that the available Permissions are the
intersection of the IMC’s and TNCC’s permissions so the IMC will not accidentally perform any
operations that the TNCC is not already trusted to perform.

Of course, a TNCC or IMC with limited privileges have somewhat limited utility. For example, a
TNCC needs at least enough privileges to load IMCs and communicate with the network. An IMC
needs enough privileges to check endpoint integrity. If the IMC is expected to perform
remediation, it will probably need additional privileges to do that (updating files, changing settings,
etc.).

4.3.4 Finding, Loading, and Unloading IMCs
With the Java platform binding, each IMC is implemented as a jar file. When the IMC is installed
and is intended to be usable by any TNCC on the system, its jar file SHOULD be stored in a
directory that can be read by any user but can only be modified by privileged users. Then a

JAVA-IMC entry SHOULD be created in the tnc_config file, giving the full path of the jar file.

The privileges of the jar file and the tnc_config file should be set so that they can be read by

any user but can only be modified by privileged users. See section 4.3.6 for details on the format

of the tnc_config file.

A TNC Client that wishes to load a Java IMC SHOULD open the tnc_config file on the system,

read the JAVA-IMC entries in the file, and determine which of them should be loaded (using
optional local configuration or any other algorithm). For each IMC to be loaded, the TNC Client
SHOULD create a new instance of the IMC class, using the full path of the jar file and the class

name for the IMC class as specified in the tnc_config file to load the class and call the noargs

constructor for that class. When loading an IMC class in this manner, the TNCC MUST use a
class loader that will determine and assign the appropriate permissions (such as the

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 46 of 74
 TCG PUBLISHED

URLClassLoader). The TNCC SHOULD check the tnc_config file for changes and load or

unload IMCs as needed to match the latest list.

The TNCC MUST always call the IMC’s initialize method first. When it is finished with an

IMC, the TNC Client MUST call the IMC’s terminate method. The unloading of the class will be

handled by the JVM.

As described in the Security Considerations section, loading an IMC into the same JVM as the
TNCC can compromise the TNCC and other IMCs if the IMC is later found to be untrustworthy.
Also, an unstable IMC can crash the whole TNCC. However, the risk of this is considerably less
with the Java Platform Binding than with the Windows DLL Binding, especially if the Permissions
assigned to the IMC are minimal.

4.3.5 Dynamic Function Binding

The Java Platform Binding for IF-IMC does support dynamic function binding. Thus to allow a
TNCC or IMC to define methods that go beyond those included in this Abstract API and allow the
other party to determine whether the Abstract API optional methods are implemented two
techniques are used.

For a TNC Client to determine whether an optional IMC method is implemented the TNC Client
should make a call to the method. If the method is not implemented, an

UnsupportedOperationException is thrown. There are no optional TNCC methods but if

there were, the same mechanism would be employed to handle those.

Extensions to the IF-IMC API (for new versions of the IF-IMC API and vendor extensions) are
handled using interfaces. To define an extension, place the new methods and fields in a new

interface. To check whether an IMC or TNCC implements the extension, use the instanceof

operator. If so, cast the object to the interface type and use the new methods and fields.

For vendor-specific extensions to the IF-IMC API, the name of the new interface must begin with
“TNC_XXX_” where XXX is the vendor ID of the vendor defining the extension. This will help
avoid name collisions and clarify where the vendor extension came from.

4.3.6 Format of the tnc_config file

The tnc_config file specifies the set of IMCs available for TNCCs to load. TNCCs are not

required to load these IMCs. A TNCC may be configured to ignore this file, load any subset of the
IMCs listed here, load a superset of those IMCs, or load the IMCs in the list. This provides a
simple, standard way for the list of IMCs to be specified but allows TNCCs to be configured to
only load a particular set of trusted IMCs.

The tnc_config file is a UTF-8 file. However, TNCCs are only required to support US-ASCII

characters (a subset of UTF-8). If a TNCC encounters a character that is not US-ASCII and the
TNCC can not process UTF-8 properly, the TNCC SHOULD indicate an error and not load the file
at all. In fact, the TNCC SHOULD respond to any problem with the file by indicating an error and
not loading the file at all.

All characters specified here are specified in standard Unicode notation (U+nnnn where nnnn are
hexadecimal characters indicating the code points.

The tnc_config file is composed of zero or more lines. Each line ends in U+000A. No other

control characters (characters with the Unicode category Cc) are permitted in the file.

A line that begins with U+0023 is a comment. All other characters on the line should be ignored.
A line that does not contain any characters should also be ignored.

A line that begins with “JAVA-IMC ” (U+004A, U+0041, U+0056, U+0041, U+002D, U+0049,
U+004D, U+0043, U+0020) specifies a Java IMC (an IMC that uses the Java Platform Binding)
that may be loaded. The next character MUST be U+0022 (QUOTATION MARK). This MUST be
followed by a human-readable IMC name (potentially zero length) and another U+0022 character

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 47 of 74
 TCG PUBLISHED

(QUOTATION MARK). Of course, the human-readable IMC name cannot contain a U+0022
(QUOTATION MARK). But it can contain spaces or other characters. After the U+0022 that
terminates the human-readable name MUST come a space (U+0020), the fully qualified class
name of the IMC class (which MUST NOT include a space), followed by a space (U+0020). After
this space MUST come the full path of the IMC jar file (which runs up to but does not include the
U+000A that terminates the line). The path to the IMC jar file MUST NOT be a partial path. For
maximum compatibility, the fully qualified class name SHOULD NOT contain any characters that
are not US-ASCII characters.

The tnc_config file must not contain more than one Java IMC with the same human-readable

name. A TNCC that encounters such a file SHOULD indicate the error and MAY not load the file
at all. It MAY also change the IMC names to make them unique. Identical class names and full
paths are permitted but the TNCC MAY ignore entries with identical class names or paths if they
will cause problems for it.

An extension mechanism has been defined so that vendors can place vendor-specific data in the

tnc_config file without risking conflicts. A line that contains such vendor-specific data must

begin with the vendor ID (as defined in section 3.2.3) of the vendor who defined this extension.
The vendor ID must be immediately followed in the name by an underscore which may be
followed by any string except control characters until the end of line (U+000A).

The internal format of this vendor-specific data and the manner in which it is to be used should be
specified by the vendor whose vendor ID is used to define the extension. For instance, a TNCC
vendor with vendor ID 2 could specify that any IMC can add a line at install time that begins with
2_SupportPhoneIMC, then the IMC’s human-readable name and the IMC vendor’s support
telephone number. The defining vendor’s TNCC (or any other TNCC) can read this phone
number and display it in the TNCC’s status panel next to the IMC name.

TNCCs and IMCs SHOULD ignore unrecognized vendor-specific data. This recommendation is
backwards-compatible with the recommendation in IF-IMC 1.0 for TNCCs and IMCs to ignore

lines in the tnc_config file with unrecognized syntax.

A line that does not match the comment, empty, java-imc, or vendor productions below SHOULD
be ignored by a TNCC and IMCs that are using the Java Platform Binding unless otherwise
specified by a future version of this binding. This provides for future extensions to this file format.

Here is a specification of the file format using ABNF as defined in [3].

tnc_config = *line
line = (comment / empty / imc / java-imc / imv / java-imv / vendor /
other) %x0A
comment = %x23 *(%x01-09 / %x0B-22 / %x24-1FFFFF)
empty = ""
imc = %x49.4D.43.20.22 name %x22.20 path
java-imc = %x4a.41.56.41.2d.49.4D.43.20.22 name %x22.20 class %x20 path
imv = %x49.4D.56.20.22 name %x22.20 path
java-imv = %x4a.41.56.41.2d.49.4D.56.20.22 name %x22.20 class %x20 path
name = *(%x01-09 / %x0B-21 / %x23-1FFFFF)
class = *(%x01-09 / %x0B-1F / %x21-1FFFFF)
path = *(%x01-09 / %x0B-1FFFFF)
digit = (%x30-39)
vendor = *digit %x5f *(%x01-09 / %x0B-1FFFFF)
other = 1*(%x01-09 / %x0B-1FFFFF) ; But match more specific rules first

Note that lines that match the imc, imv, and java-imv productions are ignored for the purposes

of the Java Platform Binding for IF-IMC. Note also that the other production is only employed if

no other production matches a line.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 48 of 74
 TCG PUBLISHED

Here is a sample file specifying one Java IMC named “Example IMC” with a fully qualified class
name of com.example.ExampleIMC and a jar file path of /usr/bin/example_imc.jar.

Simple Java IMC config file

JAVA-IMC "Example IMC" com.example.ExampleIMC /usr/bin/example_imc.jar

4.3.7 Location of the tnc_config file

The location of the tnc_config file depends on the operating system in use. For Windows

operating systems, the file SHOULD go in the C:\WINDOWS directory. For Linux and UNIX and
MacOS X operating systems, the file SHOULD go in the /etc directory. This specification does not

define a standard location for the tnc_config file on other operating systems at this time. IMCs

and TNCCs MAY use the os.name property to determine which operating system they are

running on and choose the appropriate location for the tnc_config file. If the value of the

os.name property begins with “Windows”, then the operating system is probably a Windows
operating system. If not, it’s probably a Linux, UNIX, or MacOS X operating system.

If the directory described above does not exist, the IMC or TNCC should not create it. These
directories are a basic part of the Windows and Linux/UNIX/MacOS X operating systems. If they
do not exist, there is some problem that will probably require administrative intervention.

4.3.8 Threading

With the Java Binding for IF-IMC, IMCs are not required to be thread-safe. Therefore, the TNC
Client MUST NOT call an IMC from one thread when another TNC Client thread is in the middle
of a call to the same IMC. However, since more than one TNC Client may be running at once on
a single machine (rare, but possible), any IMC MUST be prepared to be loaded in multiple
processes at once and to have these processes issue overlapping calls to the IMC.

An IMC MAY create threads. The TNC Client MUST be thread-safe. This allows the IMC to do
work in background threads and to call the TNC Client when it wants to request an Integrity
Check Handshake retry (for instance).

All IMC functions SHOULD return promptly (preferably, within 100 ms or less). Otherwise, the
TNC Client may get bogged down waiting for a response from the IMC.

4.3.9 Platform-Specific Bindings for Basic Types

With the Java Platform Binding, the basic data types defined in the IF-IMC abstract API are
mapped as follows:

The TNC_UInt32 type is mapped to Java’s long type.

The TNC_BufferReference type is mapped to a byte array (byte []). The value NULL is

allowed for a TNC_BufferReference only where explicitly permitted in this specification.

Since Java does not have an equivalent of C’s typedef, the Java types are used in the Java
interface definitions.

4.3.10 Platform-Specific Bindings for Derived Types
With the Java Platform Binding, the platform-specific derived data types defined in the IF-IMC
abstract API are mapped as follows:

The TNC_MessageTypeList type is mapped to an array of longs (long []). The value NULL

is allowed for a TNC_MessageTypeList only where explicitly permitted in this specification.

4.3.11 Interface and Class Definitions

Here are interface and class definitions for the Java Platform Binding for the IF-IMC API.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 49 of 74
 TCG PUBLISHED

4.3.11.1 TNCException Class (TNCException.java)

org.trustedcomputinggroup.tnc
public class TNCException
extends java.lang.Exception

An exception that provides information on IF-IMC/IF-IMV errors. This exception class

which wraps the result codes defined in the IF-IMC and IF-IMV Abstract API MUST be

implemented by all TNCCs and TNCSs.

Each method in the IF-IMC/IF-IMV API throws an exception to indicate reason for

failure. IMCs, IMVs, TNCCs and TNCSs MUST be prepared for any method to throw an

TNCException.

This class defines a set of standard result codes. Vendor-specific result codes may be

used but must be constructed as described in the abstract API. Any unknown result code

SHOULD be treated as equivalent to TNC_RESULT_OTHER.

If an IMC or IMV method returns TNC_RESULT_FATAL, then the IMC or IMV has

encountered a permanent error. The TNCC or TNCS SHOULD call the IMC or IMV's

terminate method as soon as possible. The TNCC or TNCS MAY then try to reinitialize

the IMC or IMV with the IMC or IMV's initialize method or try other measures.

If a TNCC or TNCS method returns TNC_RESULT_FATAL, then the TNCC or TNCS

has encountered a permanent error.

public static final long TNC_RESULT_NOT_INITIALIZED

The IMC or IMV's initialize method has not been called.

public static final long TNC_RESULT_ALREADY_INITIALIZED

The IMC or IMV's initialize method was called twice without a call to the IMC or

IMV's terminate method.

public static final long TNC_RESULT_CANT_RETRY

TNCC or TNCS cannot attempt handshake retry.

public static final long TNC_RESULT_WONT_RETRY

TNCC or TNCS refuses to attempt handshake retry.

public static final long TNC_RESULT_INVALID_PARAMETER

Method parameter is not valid.

public static final long TNC_RESULT_CANT_RESPOND

IMC or IMV cannot respond now.

public static final long TNC_RESULT_ILLEGAL_OPERATION

Illegal operation attempted.

public static final long TNC_RESULT_OTHER

Unspecified error.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 50 of 74
 TCG PUBLISHED

public static final long TNC_RESULT_FATAL
Unspecified fatal error.

Constructor Detail
public TNCException()

Constructs a TNCException object; the resultCode field defaults to

TNC_RESULT_OTHER.

public TNCException(java.lang.String s,
 long resultCode)

Constructs a fully-specified TNCException object.

Parameters:

s - a description of the exception

resultCode - TNC result code

Method Detail
public long getResultCode()

Retrieves the TNC result code for this TNCException object.

Returns:
the TNC result code

4.3.11.2 TNCConstants Class (TNCConstants.java)

org.trustedcomputinggroup.tnc
public interface TNCConstants

A collection of well known or common constants to be used by the IMC and IMV

packages.

Field Detail
static final long TNC_CONNECTION_STATE_CREATE

Network connection created.

static final long TNC_CONNECTION_STATE_HANDSHAKE

Handshake about to start.

static final long TNC_CONNECTION_STATE_ACCESS_ALLOWED

Handshake completed. TNC Server recommended that requested access be allowed.

static final long TNC_CONNECTION_STATE_ACCESS_ISOLATED

Handshake completed. TNC Server recommended that isolated access be allowed.

static final long TNC_CONNECTION_STATE_ACCESS_NONE

Handshake completed. TNCS Server recommended that no network access be allowed.

static final long TNC_CONNECTION_STATE_DELETE

About to delete network connection . Remove all associated state.

static final long TNC_VENDORID_ANY

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 51 of 74
 TCG PUBLISHED

Wild card matching any vendor ID.

static final long TNC_SUBTYPE_ANY

Wild card matching any message subtype.

4.3.11.3 TNCC Interface (TNCC.java)

org.trustedcomputinggroup.tnc.ifimc
public interface TNCC

These methods are implemented by the TNC Client and called by the IMC.

Method Detail
void reportMessageTypes(IMC imc,
 long[] supportedTypes)
 throws TNCException

A call to this method is used to inform a TNCC about the set of message types that the
IMC wishes to receive. Often, the IMC will call this method from the IMC's initialize
method. A list of message types is contained in the supportedTypes parameter. The
supportedTypes parameter may be null to represent no message types.

All TNC Clients MUST implement this method. The TNC Client MUST NOT

ever modify the list of message types and MUST NOT access this list after TNCC

reportMessageTypes() method has returned. Generally, the TNC Client will copy

the contents of this list before returning from this method. TNC Clients MUST

support any message type.

Note that although all TNC Clients must implement this method, some IMCs may

never call it if they don't support receiving any message types. This is acceptable.

In such a case, the TNC Client MUST NOT deliver any messages to the IMC.

If an IMC requests a message type whose vendor ID is TNC_VENDORID_ANY

and whose subtype is TNC_SUBTYPE_ANY it will receive all messages with

any message type. If an IMC requests a message type whose vendor ID is not

TNC_VENDORID_ANY and whose subtype is TNC_SUBTYPE_ANY, it will

receive all messages with the specified vendor ID and any subtype. If an IMC

calls the TNCC's reportMessageTypes method more than once, the message type

list supplied in the latest call supplants the message type lists supplied in earlier

calls.

Parameters:

imc - the IMC reporting its message types

supportedTypes - the message types the IMC wishes to receive

Throws:

TNCException - if a TNC error occurs

void requestHandshakeRetry(IMC imc,
 long reason)
 throws TNCException

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 52 of 74
 TCG PUBLISHED

IMCs can call this method to ask a TNCC to retry an Integrity Check Handshake for all
current network connections. The IMC MUST pass itself as the imc parameter and one of
the handshake retry reasons in IMCConnection as the reason parameter.

TNCCs MAY check the parameters to make sure they are valid and return an

error if not, but TNCCs are not required to make these checks. The reason

parameter explains why the IMC is requesting a handshake retry. The TNCC

MAY use this in deciding whether to attempt the handshake retry. TNCCs are not

required to honor IMC requests for handshake retry (especially since handshake

retry may not be possible or may interrupt network connectivity). An IMC MAY

call this method at any time, even if an Integrity Check Handshake is currently

underway. This is useful if the IMC suddenly gets important information but has

already finished its dialog with the IMV, for instance. As always, the TNCC is not

required to honor the request for handshake retry.

If the TNCC cannot attempt the handshake retry, it SHOULD throw a

TNCException with result code TNC_RESULT_CANT_RETRY. If the TNCC

could attempt to retry the handshake but chooses not to, it SHOULD throw a

TNCException with result code TNC_RESULT_WONT_RETRY. The IMC

MAY use this information in displaying diagnostic and progress messages.

Parameters:

imc - an IMC requesting a retry handshake

reason - the reason for the handshake request

Throws:

TNCException - if a TNC error occurs

4.3.11.4 IMC Interface (IMC.java)

org.trustedcomputinggroup.tnc.ifimc
public interface IMC

A Integrity Measurement Collector (IMC). These methods are implemented by the IMC

and called by the TNC Client.

Method Detail
void initialize(TNCC tncc)
 throws TNCException

Initializes the IMC. The TNC Client supplies itself as a parameter so the IMC can call the
TNCC as needed.

The TNC Client MUST NOT call any other IF-IMC API methods for an IMC

until it has successfully completed a call to the IMC's initialize method. Once a

call to this method has completed successfully, this method MUST NOT be called

again for a particular IMC-TNCC pair until a call to the IMC's terminate method

has completed successfully.

Parameters:

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 53 of 74
 TCG PUBLISHED

tncc - the TNC Client

Throws:

TNCException - if a TNC error occurs

void terminate()
 throws TNCException

Closes down the IMC. The TNC Client calls this method to close down the IMC when all
work is complete or the IMC throws an TNC_RESULT_FATAL exception. Once a call to
an IMC's terminate method is made, the TNC Client MUST NOT call the IMC except to
call the IMC's initialize method (which may not succeed if the IMC cannot reinitialize
itself). Even if the IMC throws an exception from this method, the TNC Client MAY
continue with its unload or shutdown procedure.
Throws:

TNCException - if a TNC error occurs

void notifyConnectionChange(IMCConnection c,
 long newState)
 throws TNCException

Informs the IMC that the state of the network connection identified by connection
parameter has changed to a new state. All the possible values of the new state for this
version of the IF-IMC API are identified in the TNCConstants class. The TNCC MUST
NOT use any other values with this version of IF-IMC.

IMCs that want to track the state of network connections or maintain per-

connection data structures SHOULD implement this method. If an IMC chooses

to not implement this method it MUST throw an

UnsupportedOperationException.

If the state is TNC_CONNECTION_STATE_CREATE, the IMC SHOULD note

the creation of a new network connection.

If the state is TNC_CONNECTION_STATE_ACCESS_ALLOWED or

TNC_CONNECTION_STATE_ACCESS_ISOLATED, the IMC SHOULD

proceed with any remediation instructions received during the Integrity Check

Handshake. However, the IMC SHOULD be prepared for delays in network

access or even complete denial of network access, even in these cases. Network

access will often be delayed for a few seconds while an IP address is acquired.

And network access may be denied if the NAA overrides the TNCS Action

Recommendation reflected in the new state value.

If the state is TNC_CONNECTION_STATE_ACCESS_NONE, the IMC MAY

discard any remediation instructions received during the Integrity Check

Handshake or it MAY follow them if possible.

If the state is TNC_CONNECTION_STATE_HANDSHAKE, an Integrity Check

Handshake is about to begin.

If the state is TNC_CONNECTION_STATE_DELETE, the IMC SHOULD

discard any state pertaining to this network connection and MUST NOT pass this

network connection ID to the TNC Client after this method returns (unless the

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 54 of 74
 TCG PUBLISHED

TNCC later creates another network connection with the same network

connection ID).

Parameters:

c - the IMC connection object

newState - new network connection state

Throws:

TNCException - if a TNC error occurs

void beginHandshake(IMCConnection c)
 throws TNCException

The TNC Client calls this method to indicate that an Integrity Check Handshake is
beginning and solicit messages from IMCs for the first batch. The IMC SHOULD send
any IMC-IMV messages it wants to send as soon as possible after this method is called
and then return from this method to indicate that it is finished sending messages for this
batch.

As with all IMC methods, the IMC SHOULD NOT wait a long time before

returning from the IMC beginHandshake() method. To do otherwise would risk

delaying the handshake indefinitely. A long delay might frustrate users or exceed

network timeouts (PDP, PEP or otherwise).

All IMCs MUST implement this method.

Parameters:

c - the IMC connection object

Throws:

TNCException - if a TNC error occurs

void receiveMessage(IMCConnection c,
 long messageType,
 byte[] message)
 throws TNCException

The TNC Client calls this method to deliver a message to the IMC. The message is
contained in the buffer referenced by message. The type of the message is indicated by
messageType. The message MUST be from an IMV (or a TNCS or other party acting as
an IMV).

The IMC SHOULD send any IMC-IMV messages it wants to send as soon as

possible after this method is called and then return from this method to indicate

that it is finished sending messages in response to this message.

As with all IMC methods, the IMC SHOULD NOT wait a long time before

returning from the IMC receiveMessage() method. To do otherwise would risk

delaying the handshake indefinitely. A long delay might frustrate users or exceed

network timeouts (PDP, PEP or otherwise).

The IMC should implement this method if it wants to receive messages. Simple

IMCs that only send messages need not implement this method but MUST at a

minimum throw an UnsupportedOperationException. The IMC MUST NOT ever

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 55 of 74
 TCG PUBLISHED

modify the buffer contents and MUST NOT access the buffer after the IMC

receiveMessage() method has returned. If the IMC wants to retain the message, it

should copy it before returning from the IMC receiveMessage() method.

The message parameter may be null to represent an empty message. In the

messageType parameter, the TNCC MUST pass the type of the message. This

value MUST match one of the TNC_MessageType values previously supplied by

the IMC to the TNCC in the IMC's most recent call to the TNCC's

reportMessageTypes() method. IMCs MAY check these parameters to make sure

they are valid and throw an exception if not, but IMCs are not required to make

these checks.

Parameters:

c - the IMC connection object

messageType - the type of message to be delivered

message - the message to be delivered

Throws:

TNCException - if a TNC error occurs

void batchEnding(IMCConnection c)
 throws TNCException

The TNC Client calls this method to notify IMCs that all IMV messages received in a
batch have been delivered and this is the IMC's last chance to send a message in the
batch of IMC messages currently being collected. An IMC MAY implement this method if
it wants to perform some actions after all the IMV messages received during a batch
have been delivered (using the IMC receiveMessage() method). This is especially useful
for IMCs that have included a wildcard in the list of message types reported using the
TNCC reportMessageTypes() method. If an IMC chooses to not implement this method it
MUST throw an UnsupportedOperationException.

An IMC MAY call the IMCConnection's sendMessage method from this method.

As with all IMC methods, the IMC SHOULD NOT wait a long time before

returning from the batchEnding method. To do otherwise would risk delaying the

handshake indefinitely. A long delay might frustrate users or exceed network

timeouts (PDP, PEP or otherwise).

Parameters:

c - the IMC connection object

Throws:

TNCException - if a TNC error occurs

4.3.11.5 IMCConnection Interface (IMCConnection.java)

org.trustedcomputinggroup.tnc.ifimc

Interface IMCConnection

public interface IMCConnection

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 56 of 74
 TCG PUBLISHED

The IMC and TNCC use this IMCConnection object to refer to the network connection

when delivering messages and performing other operations relevant to the network

connection. This helps ensure that IMC messages are sent to the right TNCS and helps

the IMC match up messages from IMVs with any state the IMC may be maintaining from

earlier parts of that IMC-IMV conversation (even extending across multiple Integrity

Check Handshakes in a single network connection).

The TNCC MUST create a new IMCConnection object for each combination of an IMC

and a connection. IMCConnection objects MUST NOT be shared between multiple

IMCs.

Field Detail
static final long TNC_RETRY_REASON_IMC_REMEDIATION_COMPLETE

Handshake retry reason when IMC has completed remediation.

static final long TNC_RETRY_REASON_IMC_SERIOUS_EVENT

Handshake retry reason when IMC has detected a serious event and recommends
handshake retry even if network connectivity must be interrupted.

static final long TNC_RETRY_REASON_IMC_INFORMATIONAL_EVENT

Handshake retry reason when IMC has detected an event that it would like to
communicate to the IMV. It requests handshake retry but not if network connectivity must
be interrupted.

static final long TNC_RETRY_REASON_IMC_PERIODIC

Handshake retry reason when IMC wishes to conduct a periodic recheck. It recommends
handshake retry but not if network connectivity must be interrupted.

Method Detail
void sendMessage(long messageType,
 byte[] message)
 throws TNCException

Gives a message to the TNCC for delivery. The message is contained in the buffer

referenced by the message parameter. The message parameter may be NULL which

represent an empty message. The type of the message is indicated by the messageType
parameter.

All IMCConnections MUST implement this method. An IMCConnection MUST

NOT ever modify the buffer contents and MUST NOT access the buffer after this

method has returned. The IMCConnection will typically copy the message out of

the buffer, queue it up for delivery, and return from this method.

The IMC MUST NOT call this method unless it has received a call to the IMC's

beginHandshake method, the IMC's receiveMessage method, or the IMC's

batchEnding method for this connection and the IMC has not yet returned from

that method. If the IMC violates this prohibition, this method SHOULD throw a

TNCException with result code TNC_RESULT_ILLEGAL_OPERATION. If an

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 57 of 74
 TCG PUBLISHED

IMC really wants to communicate with an IMV at another time, it should call the

IMCConnection's requestHandshakeRetry method.

Note that a TNCC or TNCS MAY cut off IMC-IMV communications at any time

for any reason, including limited support for long conversations in underlying

protocols, user or administrator intervention, or policy. If this happens, the

IMCConnection's sendMessage method will throw a TNCException with result

code TNC_RESULT_ILLEGAL_OPERATION.

The TNC Client MUST support any message type. However, the IMC MUST

NOT specify a message type whose vendor ID is 0xffffff or whose subtype is

0xff. These values are reserved for use as wild cards. If the IMC violates this

prohibition, the IMCConnection SHOULD throw a TNCException with result

code TNC_RESULT_INVALID_PARAMETER.

Parameters:

messageType - the type of message to be delivered

message - the message to be delivered (may be null)

Throws:

TNCException - if a error occurs

void requestHandshakeRetry(long reason)
 throws TNCException

Asks a IMCConnection to retry an Integrity Check Handshake. The IMC MUST pass one
of the handshake retry reasons listed in IF-IMC Abstract API as the reason parameter.
Parameters:

reason - the reason for the handshake request

Throws:

TNCException - if an error occurs

C:\Documents and Settings\shanna\My
Documents\tcg\tnc\ifimc\jar3\doc2\org\trustedcomputinggroup\tnc\ifimc\IMCConnection.html -
skip-navbar_bottom

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 58 of 74
 TCG PUBLISHED

5 Security Considerations
IF-IMC is a critical component since it enables third party security applications to provide the
information that can be used by administrators to make network access control decisions. The
security of this interface is critical to ensure that the TNC framework is not itself subject to attack
and circumvention. Hostile code has many ways to enter a platform and can eliminate, tamper
with or circumvent security applications.

This section describes the security threats related to IF-IMC and suggests methods to address
these threats. The components involved in IF-IMC are one or more Trusted Network Connect
Clients (TNCC) and one or more Integrity Measurement Collectors (IMCs). All the above
components reside on the same endpoint or Access Requestor (AR). IF-IMC is the interface
between the TNCC and the IMCs.

5.1 Threat analysis

5.1.1 Registration and Discovery based threats
The TNCC discovers which IMCs are installed on a platform via a platform specific binding, for
example, on the Windows platform using a windows registry key and on the Linux or Unix
platform, a configuration file. On Windows, the registry keys are typically created when the IMCs
are installed, requiring the IMC installer to possess sufficient privileges on the platform. Similarly
the TNCC must have sufficient privileges to read the relevant keys. Based on the IMCs
discovered in the registry, the TNCC loads the code referenced by the registry entries. On Linux
and UNIX, analogous privilege requirements apply for accessing the configuration file. Any party
with sufficient privileges to modify the relevant registry key or configuration file can mount the
following attacks on the registration process:

- It can add an invalid IMC
- It can remove a valid IMC, perhaps replacing it with rogue/modified versions of code

Similar attacks can also be mounted by modifying the code of an IMC or critical data upon which
the IMC depends.

The ability to add an invalid IMC can have considerable impact, as detailed in the next section.

5.1.2 Rogue IMC threats
If a rogue IMC is installed and then loaded by a valid TNCC, it may be able to misuse the IF-IMC
API in the following ways:

- Overwrite TNCC or IMC memory
- Violate IF-IMC API requirements such as passing illegal or unexpected argument values
- Perform illegal operations so that the TNCC is terminated by the operating system
- Perform improper operations with the TNCC’s privileges
- Attack other components (such as the NAR or applications) using the privileges or

credentials of the TNCC or other IMCs
- Send invalid messages to IMCs or IMVs, leading to IMC or IMV crashes or compromise,

excessive IMC or IMV resource consumption, or unauthorized or malicious remediation
- Monitor IMC-IMV messages and disclose them or use them for attacks on this or other

ARs
- Issue a large number of interface API calls to the TNCC (Denial of service of the TNCC)
- Spoof specific IMCs and provide incorrect information to a TNCC about other IMCs
- Spoof TNCC calls to a IMC and provide incorrect connection notification changes.
- Spoof specific IF-IMC APIs and provide incorrect received messages or request incorrect

message types for other IMCs
- Spuriously request handshake retries (Denial of service)
- Lock up TNCC threads by not returning from function calls (Denial of service)
- Cause untimely unloading of IMCs
- Use vendor-specific extensions to IF-IMV to perform other attacks

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 59 of 74
 TCG PUBLISHED

5.1.3 Rogue TNCC threats

If a rogue TNCC loads a valid IMC, it may be able to misuse IF-IMC in the following ways:

- Overwrite IMC memory
- Violate IF-IMC API requirements such as passing illegal or unexpected argument values
- Attack other components (such as the NAR or applications) using the credentials of an

IMC
- Send invalid messages to IMCs or IMVs, leading to IMC or IMV crashes or compromise,

excessive IMC or IMV resource consumption, or unauthorized or malicious remediation
- Monitor IMC-IMV messages and disclose them or use them for attacks on this or other

ARs
- Issue a large number of, or particularly expensive, interface API calls to an IMC, possibly

causing denial of service of a critical security application
- Spuriously request or perform handshake retries (Denial of service)
- Use vendor-specific extensions to IF-IMC to perform other attacks

5.1.4 Man-in-the-Middle Threats

If an attacker injects a man-in-the-middle between an IMC and its corresponding IMV peer entity,
between an IMC and its corresponding TNCC, or between a TNCC and a TNCS it may be able to
be misused in the following ways:

- Allows the viewing, modification, deletion, or addition, of messages passing between the
IMC and the IMV, between the IMC and its corresponding TNCC, or between the TNCC
and the TNCS,

- Allow the replay of measurements or other messages that are not reflective of the Access
Requestor’s current conditions.

5.1.5 Tampering Threats on IMCs and TNCCs

Malicious code (worms, viruses, etc) or another unauthorized application can modify an IMC or
TNCC. This allows the attacker to misuse TNC components in the following ways:

- Modify legitimate messages, add new illegitimate messages, or delete legitimate
messages.

- Allow the attack to exfiltrate measurements and other data from an Access Requestor.

5.1.6 Threats Beyond IF-IMC

IF-IMC is part of the larger TNC architecture. Successful attacks against other parts of the TNC
architecture will generally result in negative effects for IMCs, TNCCs, and the system as a whole.
See the Security Considerations section of the TNC Architecture document for an analysis of
considerations that pertain to other parts of the TNC architecture.

5.2 Suggested remedies
As demonstrated by the attacks listed above, it is critical that only authorized IMCs be loaded by
a TNCC and only authorized TNCCs be allowed to load an IMC. There are well known methods
to control what code is loaded by a TNCC:

• Generate a cryptographic hash on the code image and verify it against a list of good hashes

• Verify the software publisher using certificates

• Control access to the IMC registration mechanism (registry or configuration file)

• Control access to IMC code and critical data files

• Employ a TNCC-specific list of authorized IMCs

Similar checks can be performed by the operating system before loading the TNCC.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 60 of 74
 TCG PUBLISHED

Industry standard best practices for secure coding, software engineering, and code reviews
should be followed during the development of IMCs and TNCCs in order to minimize the
possibility of incorrect design, incorrect implementation, and software flaws thus mitigating some
of the attacks described above.

The addition of a Platform Trust Service (PTS) may provide the above listed services and may
also use hardware such as the Trusted Platform Module (TPM) to establish a trusted load path on
a platform which is rooted in hardware. In short, every loader entity on the platform is measured
before it loads another component, and the measured loaders are expected to log their
measurements with corresponding verification signatures in the TPM. In addition, using PTS for
dynamic measuring of TNC components during runtime and also mitigate the attacks related to
tampering.

Information disclosure attacks can be prevented by creating security associations between IMCs
and IMVs. This does not preclude an additional security association between a NAR and a NAA.

To prevent/detect denial of service attacks, API usage from registered IMCs can be monitored.

However, stronger protection against rogue IMCs can be provided by having the TNCC launch a
new “child” process for each IMC, having the child process load the IMC, and then having the
TNCC communicate with the child processes carefully. This limits the amount of damage that can
be done by a rogue IMC. The TNCC may use this approach but is not required to do so.

This specification requires that all valid IMCs be installed to a protected system directory. The
loading of a rogue IMC can be mitigated (not prevented) by requiring privileged access to the
registry key or config file. Note, however, that some (usually legacy) operating systems have no
concept of a "protected" directory, registry, or file, and thus are provided no protection from this
scenario. Note that this approach requires best practices for the use of protected directories and
registries; if a user has any administrative access to these objects, they are vulnerable to a social
engineering approach to causing a Trojan IMC to be installed.

IMC implementers who choose a stub-to-application implementation must take care not to make
the stub-to-application communications the “weak link” in the security chain. They should choose
protocols which maintain integrity and confidentiality as required, while taking into account the
need for efficiency.

One countermeasure for a man-in-the-middle attack is to make use of the PTS described in this
section earlier. An additional countermeasure is to have the IF-M protocol (between the IMC and
the IMV) and/or the IF-TNCCS (between the TNCC and the TNCS provide both strong mutual
authentication and anti-replay technology in a similar manner to the IF-T protocol. Note: Future
enhancements to this specification may be necessary for this type of counter measure.

Protection from many of the identified threats can be provided by housing the IMCs and TNCCs
separately from that which is being measured. If a particular component exists within an isolated
environment, the chance of it being compromised is far reduced. It is recommended that careful
analysis of the threat environment that a TNC implementation will be deployed into be conducted
and the strongest such isolation that makes sense in that environment be applied.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 61 of 74
 TCG PUBLISHED

6 C Header File
This section provides a C header file that serves as a binding for the IF-IMC API with the C
language and the Microsoft Windows DLL platform binding. As noted in section 3.1, implementers
SHOULD use the C language binding when possible for maximum compatibility with other IMCs
and TNC Clients on their platform.

/* tncifimc.h
 *
 * Trusted Network Connect IF-IMC API version 1.20 Revision 8
 * Microsoft Windows DLL Platform Binding C Header
 * February 5, 2007
 *
 * Copyright(c) 2005-2007, Trusted Computing Group, Inc. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * • Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * • Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 * • Neither the name of the Trusted Computing Group nor the names of
 * its contributors may be used to endorse or promote products
 * derived from this software without specific prior written
 * permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 * Contact the Trusted Computing Group at
 * admin@trustedcomputinggroup.org for information on specification
 * licensing through membership agreements.
 *
 * Any marks and brands contained herein are the property of their
 * respective owners.
 *
 */

#ifndef _TNCIFIMC_H
#define _TNCIFIMC_H

#ifdef __cplusplus
extern "C" {

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 62 of 74
 TCG PUBLISHED

#endif

#ifdef WIN32
#ifdef TNC_IMC_EXPORTS
#define TNC_IMC_API __declspec(dllexport)
#else
#define TNC_IMC_API __declspec(dllimport)
#endif
#else
#define TNC_IMC_API
#endif

/* Basic Types */

typedef unsigned long TNC_UInt32;
typedef unsigned char *TNC_BufferReference;

/* Derived Types */

typedef TNC_UInt32 TNC_IMCID;
typedef TNC_UInt32 TNC_ConnectionID;
typedef TNC_UInt32 TNC_ConnectionState;
typedef TNC_UInt32 TNC_RetryReason;
typedef TNC_UInt32 TNC_MessageType;
typedef TNC_MessageType *TNC_MessageTypeList;
typedef TNC_UInt32 TNC_VendorID;
typedef TNC_UInt32 TNC_MessageSubtype;
typedef TNC_UInt32 TNC_Version;
typedef TNC_UInt32 TNC_Result;

/* Function pointers */

typedef TNC_Result (*TNC_IMC_InitializePointer)(
 TNC_IMCID imcID,
 TNC_Version minVersion,
 TNC_Version maxVersion,
 TNC_Version *pOutActualVersion);
typedef TNC_Result (*TNC_IMC_NotifyConnectionChangePointer)(
 TNC_IMCID imcID,
 TNC_ConnectionID connectionID,
 TNC_ConnectionState newState);
typedef TNC_Result (*TNC_IMC_BeginHandshakePointer)(
 TNC_IMCID imcID,
 TNC_ConnectionID connectionID);
typedef TNC_Result (*TNC_IMC_ReceiveMessagePointer)(
 TNC_IMCID imcID,
 TNC_ConnectionID connectionID,
 TNC_BufferReference message,
 TNC_UInt32 messageLength,
 TNC_MessageType messageType);
typedef TNC_Result (*TNC_IMC_BatchEndingPointer)(
 TNC_IMCID imcID,
 TNC_ConnectionID connectionID);
typedef TNC_Result (*TNC_IMC_TerminatePointer)(
 TNC_IMCID imcID);
typedef TNC_Result (*TNC_TNCC_ReportMessageTypesPointer)(
 TNC_IMCID imcID,

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 63 of 74
 TCG PUBLISHED

 TNC_MessageTypeList supportedTypes,
 TNC_UInt32 typeCount);
typedef TNC_Result (*TNC_TNCC_SendMessagePointer)(
 TNC_IMCID imcID,
 TNC_ConnectionID connectionID,
 TNC_BufferReference message,
 TNC_UInt32 messageLength,
 TNC_MessageType messageType);
typedef TNC_Result (*TNC_TNCC_RequestHandshakeRetryPointer)(
 TNC_IMCID imcID,
 TNC_ConnectionID connectionID,
 TNC_RetryReason reason);
typedef TNC_Result (*TNC_TNCC_BindFunctionPointer)(
 TNC_IMCID imcID,
 char *functionName,
 void **pOutfunctionPointer);
typedef TNC_Result (*TNC_IMC_ProvideBindFunctionPointer)(
 TNC_IMCID imcID,
 TNC_TNCC_BindFunctionPointer bindFunction);

/* Result Codes */

#define TNC_RESULT_SUCCESS 0
#define TNC_RESULT_NOT_INITIALIZED 1
#define TNC_RESULT_ALREADY_INITIALIZED 2
#define TNC_RESULT_NO_COMMON_VERSION 3
#define TNC_RESULT_CANT_RETRY 4
#define TNC_RESULT_WONT_RETRY 5
#define TNC_RESULT_INVALID_PARAMETER 6
#define TNC_RESULT_CANT_RESPOND 7
#define TNC_RESULT_ILLEGAL_OPERATION 8
#define TNC_RESULT_OTHER 9
#define TNC_RESULT_FATAL 10

/* Version Numbers */

#define TNC_IFIMC_VERSION_1 1

/* Network Connection ID Values */

#define TNC_CONNECTIONID_ANY 0xFFFFFFFF

/* Network Connection State Values */

#define TNC_CONNECTION_STATE_CREATE 0
#define TNC_CONNECTION_STATE_HANDSHAKE 1
#define TNC_CONNECTION_STATE_ACCESS_ALLOWED 2
#define TNC_CONNECTION_STATE_ACCESS_ISOLATED 3
#define TNC_CONNECTION_STATE_ACCESS_NONE 4
#define TNC_CONNECTION_STATE_DELETE 5

/* Handshake Retry Reason Values */

#define TNC_RETRY_REASON_IMC_REMEDIATION_COMPLETE 0
#define TNC_RETRY_REASON_IMC_SERIOUS_EVENT 1
#define TNC_RETRY_REASON_IMC_INFORMATIONAL_EVENT 2
#define TNC_RETRY_REASON_IMC_PERIODIC 3

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 64 of 74
 TCG PUBLISHED

/* reserved for TNC_RETRY_REASON_IMV_IMPORTANT_POLICY_CHANGE: 4 */
/* reserved for TNC_RETRY_REASON_IMV_MINOR_POLICY_CHANGE: 5 */
/* reserved for TNC_RETRY_REASON_IMV_SERIOUS_EVENT: 6 */
/* reserved for TNC_RETRY_REASON_IMV_MINOR_EVENT: 7 */
/* reserved for TNC_RETRY_REASON_IMV_PERIODIC: 8 */

/* Vendor ID Values */

#define TNC_VENDORID_TCG 0
#define TNC_VENDORID_ANY ((TNC_VendorID) 0xffffff)

/* Message Subtype Values */

#define TNC_SUBTYPE_ANY ((TNC_MessageSubtype) 0xff)

/* IMC Functions */

TNC_IMC_API TNC_Result TNC_IMC_Initialize(
/*in*/ TNC_IMCID imcID,
/*in*/ TNC_Version minVersion,
/*in*/ TNC_Version maxVersion,
/*out*/ TNC_Version *pOutActualVersion);

TNC_IMC_API TNC_Result TNC_IMC_NotifyConnectionChange(
/*in*/ TNC_IMCID imcID,
/*in*/ TNC_ConnectionID connectionID,
/*in*/ TNC_ConnectionState newState);

TNC_IMC_API TNC_Result TNC_IMC_BeginHandshake(
/*in*/ TNC_IMCID imcID,
/*in*/ TNC_ConnectionID connectionID);

TNC_IMC_API TNC_Result TNC_IMC_ReceiveMessage(
/*in*/ TNC_IMCID imcID,
/*in*/ TNC_ConnectionID connectionID,
/*in*/ TNC_BufferReference messageBuffer,
/*in*/ TNC_UInt32 messageLength,
/*in*/ TNC_MessageType messageType);

TNC_IMC_API TNC_Result TNC_IMC_BatchEnding(
/*in*/ TNC_IMCID imcID,
/*in*/ TNC_ConnectionID connectionID);

TNC_IMC_API TNC_Result TNC_IMC_Terminate(
/*in*/ TNC_IMCID imcID);

TNC_IMC_API TNC_Result TNC_IMC_ProvideBindFunction(
/*in*/ TNC_IMCID imcID,
/*in*/ TNC_TNCC_BindFunctionPointer bindFunction);

/* TNC Client Functions */

TNC_Result TNC_TNCC_ReportMessageTypes(
/*in*/ TNC_IMCID imcID,
/*in*/ TNC_MessageTypeList supportedTypes,
/*in*/ TNC_UInt32 typeCount);

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 65 of 74
 TCG PUBLISHED

TNC_Result TNC_TNCC_SendMessage(
/*in*/ TNC_IMCID imcID,
/*in*/ TNC_ConnectionID connectionID,
/*in*/ TNC_BufferReference message,
/*in*/ TNC_UInt32 messageLength,
/*in*/ TNC_MessageType messageType);

TNC_Result TNC_TNCC_RequestHandshakeRetry(
/*in*/ TNC_IMCID imcID,
/*in*/ TNC_ConnectionID connectionID,
/*in*/ TNC_RetryReason reason);

TNC_Result TNC_TNCC_BindFunction(
/*in*/ TNC_IMCID imcID,
/*in*/ char *functionName,
/*out*/ void **pOutfunctionPointer);

#ifdef __cplusplus
}
#endif

#endif

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 66 of 74
 TCG PUBLISHED

7 Use Case Walkthrough
This section provides an informative (non-binding) walkthrough of a typical TNC use case,
showing how IF-IMC supports the use case. The text describing IF-IMC usage is in bold.
Sequence diagrams that illustrate the main parts of this walkthrough are included at the end of
this section.

7.1 Configuration
1. The IT administrator configures any addressing and security information needed for server-

side components (PEP, NAA, TNCS, and IMVs) to securely contact each other. The client-
side components (TNCC and IMCs) find each other automatically using Microsoft Windows
registry or a configuration file modified at install time. The manner in which the NAR and
TNCC find each other is not specified.

2. The IT administrator configures policies in the NAA, TNCS, and IMVs for what sorts of user
authentication, platform authentication, and integrity checks are required when.

7.2 TNCS Startup
1. When the TNCS starts up, the TNCS loads the IMVs.

The TNCS initializes the IMVs through IF-IMV.

7.3 TNCC Startup
1. When the TNCC starts up, the TNCC loads the IMCs. [IF-IMC] The details of the load

process are platform-specific. With the Microsoft Windows DLL binding, the TNCC
reads a protected registry key to find the IMC DLLs, then loads them.

During the load process, the TNCC may check the integrity of the IMCs. This is optional. If a
TPM is present, this check will typically involve hashing the IMCs and adding their hashes to
a PCR. If no TPM is present, this check may involve checking the signatures on the IMCs.
Integrity checks during IMC loading are done completely by the TNCC since there is no
TNCS or IMV available. TNCS and IMVs will get a chance to do platform authentication of the
endpoint platform later on.

2. The TNCC initializes the IMCs through IF-IMC. [IF-IMC] The TNCC calls

TNC_IMC_Initialize for each IMC. The IMC performs any initialization it may need

to, such as connecting to a background process or starting threads (if permitted by the
platform binding).

3. [IF-IMC] The TNCC performs any other platform-specific initialization needed. With the
Microsoft Windows DLL binding, the TNCC calls the

TNC_IMC_ProvideBindFunction function to give each IMC a pointer to the bind

function (TNC_TNCC_BindFunction) used for Dynamic Function Binding.

7.4 Network Connect
1. The endpoint’s NAR attempts to connect to a network protected by a PEP, thus triggering an

Integrity Check Handshake. There are other ways that an Integrity Check Handshake can be
triggered, but this will probably be the most common. For those other ways, the next few
steps may be significantly different.

2. The PEP sends a network access decision request to the NAA. The ordering of user
authentication, platform authentication, and integrity check is subject to configuration. Here
we present what will probably be the most common order: first user authentication, then
platform authentication, then integrity check.

3. The NAA performs user authentication with the NAR. Based on the NAA's policy, the user
identity established through this process may be used to make immediate access decisions

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 67 of 74
 TCG PUBLISHED

(like deny). If an immediate access decision has been made, skip to step 17. User
authentication may also involve having the NAR authenticate the NAA.

4. The NAA informs the TNCS of the connection request, providing the user identity and other
useful info (service requested, etc.).

5. The TNCS performs platform authentication with the TNCC, if required by TNCS policy. This
includes verifying the IMC hashes collected during TNCC Setup. If an immediate access
decision has been made, skip to step 16. Platform authentication may be mutual so the
TNCC can be sure it's talking to a secure server.

6. The TNCC uses IF-IMC to fetch IMC messages. [IF-IMC] If this is a new network
connection, the TNCC calls TNC_IMC_NotifyConnectionChange with the newState
parameter set to TNC_CONNECTION_STATE_CREATE to indicate that a new network
connection has been created. The TNCC calls TNC_IMC_NotifyConnectionChange
with the newState parameter set to TNC_CONNECTION_STATE_HANDSHAKE to indicate
that a new Integrity Check Handshake is starting. The TNCC calls

TNC_IMC_BeginHandshake to inform the IMCs that a new Integrity Check Handshake

is starting and they should send their messages. The IMCs call

TNC_TNCC_SendMessage to give their messages to the TNCC and then return from
TNC_IMC_BeginHandshake to indicate that they are done sending messages for this

batch.

7. The TNCS uses IF-IMV to inform each IMV that an Integrity Check Handshake has started.

8. The TNCC passes the IMC messages to the TNCS. This and all other TNCC-TNCS
communications can be sent directly but they will often be relayed through one or more of the
NAR, PEP, and NAA.

9. The TNCS passes each IMC message to the matching IMV or IMVs through IF-IMV (using
message types associated with the IMC messages to find the right IMV). If there are no IMC
messages, skip to step 13.

10. Each IMV analyzes the IMC messages. If an IMV needs to exchange more messages
(including remediation instructions) with an IMC, it provides a message to the TNCS through
IF-IMV. If an IMV is ready to decide on an IMV Action Recommendation and IMV Evaluation
Result, it gives this result to the TNCS through IF-IMV. If there are no more messages to be
sent to the IMC from any of the IMVs, skip to step 13.

11. The TNCS sends the messages from the IMVs to the TNCC.

12. The TNCC sends the IMV messages on to the IMCs through IF-IMC so they can process the
messages and respond. Skip to step 8. [IF-IMC] The TNCC delivers the IMV messages to

the IMCs via TNC_IMC_ReceiveMessage. The IMCs may call TNC_TNCC_SendMessage
before returning from TNC_IMC_ReceiveMessage if they want to send a response.
When the TNCC has delivered all the IMV messages to the IMCs, it calls

TNC_IMC_BatchEnding to inform them of this fact. The IMCs may call

TNC_TNCC_SendMessage before returning from TNC_IMC_BatchEnding if they want to
send a message to an IMV.

13. If there are any IMVs that have not given an IMV Action Recommendation to the TNCS, they
are prompted to do so through IF-IMV.

14. The TNCS considers the IMV Action Recommendations supplied by the IMVs and uses an
integrity check combining policy to decide what its TNCS Action Recommendation should be.

15. The TNCS sends a copy of its TNCS Action Recommendation to the TNCC. The TNCS also
informs the IMVs of its TNCS Action Recommendation via IF-IMV.

16. The TNCS sends its TNCS Action Recommendation to the NAA. The NAA may ignore or
modify this recommendation based on its policies but will typically abide by it.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 68 of 74
 TCG PUBLISHED

17. The NAA sends its network access decision to the PEP.

18. The PEP implements the network access decision. During this process, the NAR may be
informed of the decision. The TNCC may be informed by the NAR or may discover that a new
network has come up.

19. If step 6 was not executed, the network connect process is complete. Otherwise, the TNCC
informs the IMCs of the TNCS Action Recommendation via IF-IMC. [IF-IMC] The TNCC
signals this change in network connection state through the

TNC_IMC_NotifyConnectionChange function.

20. If the IMCs or the applications that they represent need to perform remediation, they perform
that remediation. Then they continue with Handshake Retry after Remediation. If no
remediation was needed, the use case ends here.

7.5 Handshake Retry After Remediation
1. When an IMC completes remediation, it informs the TNCC that its remediation is complete

and requests a retry of the Integrity Check Handshake through IF-IMC. [IF-IMC] The IMC

signals this by calling the TNC_TNCC_RequestHandshakeRetry function.

2. The TNCC decides whether to initiate an Integrity Check Handshake retry (possibly
depending on policy, user interaction, etc.). Depending on limitations of the NAR, the TNCC
may need to disconnect from the network and reconnect to retry the Integrity Check
Handshake. In that case (especially if the previous handshake resulted in full access), it may
decide to skip the handshake retry. However, in many cases the TNCC will be able to retry
the handshake without disrupting network access. It may even be able to retain the state
established in the earlier handshake. If the TNCC decides to skip the Integrity Check
Handshake retry, the use case ends here.

3. The TNCC initiates a retry of the handshake. Skip to step 1, 3, or 5 of the Network Connect
section above, depending on which steps are needed to initiate the retry.

7.6 Handshake Retry Initiated by TNCS
1. The TNCS can recheck the security state of the AR periodically or when integrity policies

change (such as when a new patch is required) by requesting another Integrity Check
Handshake with the TNCC. The Integrity Check Handshake retry can be done through the
PEP or by communicating directly with the TNCC. State from the previous handshake may be
retained or not. An IMV can also request an integrity handshake retry through IF-IMV. If the
TNCS decides to skip the Integrity Check Handshake retry, the use case ends here.

2. The TNCS initiates a retry of the handshake. Skip to step 3 or 5 of the Network Connect
section above, depending on whether user authentication will be done in the retry.

7.7 C Binding Sequence Diagrams

7.7.1 Sequence Diagram for Network Connect
The following sequence diagram (Figure 1) illustrates the Network Connect use case, as
described in section 7.4.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 69 of 74
 TCG PUBLISHED

IMC

TNCC TNCS IMV

TNC_IMC_NotifyConnectionChange

Access Request
Start event

Connection

 closed

TNC_TNCC_ReportMessageTypes

TNCC_IMC_Initialize

Discover, Load IMC using
platform specific binding

TNC_TNCC_SendMessage

TNC_IMC_ReceiveMessage

TNC_IMC_BeginHandshake

TNC_TNCC_SendMessage

IF-TNCCS

Request

NAR

imcID, minVersion, maxVersion, /*out*/ pOutActualVersion

imcID, connectionID, newState = CREATE

TNCC_IMC_NotifyConnectionChange

TNCC_IMC_Terminate

imcID, connectionID, newState = DELETE

TNC_TNCC_SendMessage

IF-IMV

IF-IMV

NAA

imcID, supportedTypes, typeCount

Connection Id

Request

Reply

imcID, connectionID, message, messageLength, messageType

imcID, connectionID, message, messageLength, messageType

imcID, connectionID, message, messageLength, messageType

TNCC-NAR

interface

HANDSHAKE

Initial Round

Second Round

TNCS-NAA

interface

TNCS-NAA

interface

Reply

TNCC_IMC_NotifyConnectionChange

imcID, connectionID, newState = ACCESS_ALLOWED,
ACCESS_ISOLATED, or ACCESS_NONE

imcID, connectionID, message, messageLength, messageType

imcID

Access Request
End event

TNC_IMC_NotifyConnectionChange

imcID, connectionID, newState = HANDSHAKE

TNC_IMC_BatchEnding

imcID, connectionID

Figure 1 – C Binding: IF-IMC Network Connect Sequence Diagram

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 70 of 74
 TCG PUBLISHED

7.7.2 Sequence Diagram for Handshake Retry After Remediation

The following sequence diagram (Figure 2) illustrates the Handshake Retry After Remediation
use case, as described in section 7.5.

Figure 2 – C Binding: IF-IMC Handshake Retry After Remediation Sequence Diagram

7.7.3 Sequence Diagram for Handshake Retry Initiated by TNCS

The following sequence diagram (Figure 3) illustrates the Handshake Retry Initiated by TNCS use
case, as described in section 7.6.

Figure 3 – C Binding: IF-IMC Handshake Retry Initiated by TNCS Sequence Diagram

7.7.4 Sequence Diagram for Network Connect

The following sequence diagram (Figure 4) illustrates the Network Connect use case, as
described in section 7.4.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 71 of 74
 TCG PUBLISHED

IMC

TNCC TNCS IMV

notifyConnectionChange

Access Request
Start event

Connection

 closed

reportMessageTypes

initialize

Discover, Load IMC using
Java bindings

sendMessage

receiveMessage

beginHandshake

sendMessage

IF-TNCCS

Request

NAR

tncc

connection, newState = CREATE

notifyConnectionChange

terminate

connection, newState = DELETE

sendMessage

IF-IMV

IF-IMV

NAA

connection

Request

Reply

connection, messageType, message,

messageType, message

TNCC-NAR

interface

HANDSHAKE

Initial Round

Second Round

TNCS-NAA

interface

TNCS-NAA

interface

Reply

notifyConnectionChange

connection, newState = ALLOWED, ISOLATED, or NONE

Access Request
End event

IF-IMC Network Connect Sequence Diagram

notifyConnectionChange

batchEnding

connection

IMVConnectionIMCConnection

Create

connection, newState = HANDSHAKE

messageType, message

messageType, message

Figure 4 – Java Binding: IF-IMC Network Connect Sequence Diagram

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 72 of 74
 TCG PUBLISHED

7.7.5 Sequence Diagram for Handshake Retry After Remediation

The following sequence diagram (Figure 5) illustrates the Handshake Retry After Remediation
use case, as described in section 7.5.

Figure 5 – Java Binding: IF-IMC Handshake Retry After Remediation Sequence Diagram

7.7.6 Sequence Diagram for Handshake Retry Initiated by TNCS
The following sequence diagram (Figure 6) illustrates the Handshake Retry Initiated by TNCS use
case, as described in section 7.6.

Figure 6 – Java Binding: IF-IMC Handshake Retry Initiated by TNCS Sequence Diagram

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 73 of 74
 TCG PUBLISHED

8 Implementing a Simple IMC
This section provides a brief informative (non-binding) description of how to implement a simple
IMC, one that only reports a value to an IMV (the operating system version, for instance).

This example assumes that you’re using the Microsoft Windows DLL platform binding. If not,

replace the instructions in section 8.3 about TNC_IMC_ProvideBindFunction with your

platform’s Dynamic Function Binding mechanism.

8.1 Decide on a Message Type and Format
First, you must decide what message type you will use to send your value to the IMV and what
the format of the message will be. This may involve getting a Vendor ID as described in section
3.2.3. Then implement the following functions as described here.

8.2 TNC_IMC_Initialize
All IMCs must implement the TNC_IMC_Initialize function. In your implementation,

determine whether you support any of the listed IF-IMC API versions. If not, return

TNC_RESULT_NO_COMMON_VERSION. If so, store the mutually agreed upon version number at

pOutActualVersion and initialize the IMC. Return TNC_RESULT_SUCCESS if all goes well.

Normally, you might store your IMC ID for later use but in this example all of your code is called
by the TNCC so you have the IMC ID as a parameter to all your functions.

8.3 TNC_IMC_ProvideBindFunction
Use the bind function to get a pointer to TNC_TNCC_SendMessage for later use. This is the only

state you need to keep. Return TNC_RESULT_SUCCESS unless the bind function reports an error.

In that case, return TNC_RESULT_FATAL.

8.4 TNC_IMC_BeginHandshake
When a new Integrity Check Handshake starts, you just want to send your value and then you’re
done for the rest of the handshake. To implement this function, call the pointer to

TNC_TNCC_SendMessage that you saved earlier. Pass in the IMC ID and network connection ID

provided to TNC_IMC_BeginHandshake, a pointer and length for your message, and the

message type you decided on. If TNC_TNCC_SendMessage returns an error, then return that.

Otherwise, return TNC_RESULT_SUCCESS.

8.5 All Done!
That’s it! You’ve implemented your first IMC. If you need to do anything special on termination,

you can implement TNC_IMC_Terminate. But many IMCs won’t need to.

TNC IF-IMC TCG Copyright
Specification Version 1.2

Revision 8 Published Page 74 of 74
 TCG PUBLISHED

9 References

9.1 Normative References
[1] Trusted Computing Group, TNC Architecture for Interoperability, Specification Version

1.1, May 2006.

[2] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, Internet
Engineering Task Force RFC 2119, March 1997.

[3] Crocker, D., P. Overell, “Augmented BNF for Syntax Specifications: ABNF”, Internet
Engineering Task Force RFC 2234, November 1997.

9.2 Informative References
[4] Trusted Computing Group, TNC IF-IMV, Specification Version 1.2, February 2007.

[5] ISO, ISO/IEC 9899:1999, Programming Languages – C, 1999.

