InteropLabs Network Access Control

Interop Las Vegas 2008 Robert Nagy Accuvant Inc Principal Security Consultant rnagy@accuvant.com

INTEROP MAKES YOU SMART

Interop Labs

Interop Labs are: Technology Motivated, Open Standards Based, Vendor neutral, Test and Education focused, Initiatives...

With team members from: Industry Academia Government

Visit us at Booth 151!

Technical contributions to this presentation include: Kevin Koster, Cloudpath Networks, Inc.

Karen O'Donoghue, Jan Trumbo, Joel Snyder, and the whole Interop Labs NAC team

Objectives

- This presentation will:
 - Provide a general introduction to the concept of Network Access Control
 - Highlight the evolution of the current NAC solutions
 - Provide a context to allow a network engineer to begin to plan for NAC deployment
 - Articulate a vision for NAC
- This presentation will not:
 - Provide specifics on any one vendor's solution.
 - Delve into the underlying protocol details

Why Network Access Control?

- Desire to grant different network access to different users, e.g. employees, guests, contractors
- Network endpoints can be threats
 - Enormous enterprise resources are wasted to combat an increasing numbers of viruses, worms, and spyware
- Proliferation of devices requiring network connectivity
 - Laptops, phones, PDAs
- Logistical difficulties associated with keeping corporate assets monitored and updated

Network Access Control is

Who you are ...

...should determine **What** you can access

"Who" Has Several Facets

Access Policy May Be Influenced By

- Identity
 - Jim (CTO), Steve (Network Admin), Sue (Engineering), Bob (Finance), Brett (Guest)
- Location
 - Secure room versus non-secured room
- Connection Method
 - Wired, wireless, VPN
- Time of Day
 - Limit after hours wireless access
 - Limit access after hours of employee's shift
- Posture
 - A/V installed, auto update enabled, firewall turned on, supported versions of software
 - Realtime traffic analysis feedback (IPS)

Sample Policy

IF user group="phone" THEN VLAN="phone-vlan", ACL = phone-only

ELSE IF non-compliant AND user = "Alice" THEN VLAN="quarantine" AND activate automatic remediation

ELSE IF non-compliant AND user = "Bob" THEN VLAN="quarantine"

ELSE IF compliant THEN VLAN="trusted"

```
ELSE deny all
```


NAC is More Than VLAN Assignment

- Additional access possibilities:
 - Access Control Lists
 - Switches
 - Routers
 - Firewall rules
 - Traffic shaping (QoS)
- Non-edge enforcement options
 - Such as a distant firewall

NAC is More Than Sniffing Clients for Viruses

- Behavior-based assessment
 - Why is this printer trying to connect to ssh ports?
- VPN-connected endpoints cannot access HR database

You need control points *inside* the network to make this happen

Generic NAC Components

Sample NAC Transaction

Access Requestors

- Sample Access Requestors
 - Laptops
 - PDAs
 - VoIP phones
 - Desktops
 - Printers

Access Requestor

- Components of an Access Requestor/Endpoint
 - Posture Collector(s)
 - Collects security status information (e.g. A/V software installed and up to date, personal firewall turned on)
 - May be more than one per access requestor
 - Client Broker
 - Collects data from one or more posture collectors
 - Consolidates collector data to pass to Network Access Requestor
 - Network Access Requestor
 - Connects client to network (e.g. 802.1X supplicant or IPSec VPN client)
 - Authenticates user
 - Sends posture data to Posture Validators

INTEROP

Policy Enforcement Points

Policy Enforcement Point

- Components of a Policy Enforcement Point
 - Network Enforcement Point
 - Provides access to some or all of the network
- Sample Policy Enforcement Points
 - Switches
 - Wireless Access Points
 - Routers
 - VPN Devices
 - Firewalls

Policy Decision Point

Policy Decision Point

- Components of a Policy Decision Point
 - Posture Validator(s)
 - Receives data from the corresponding posture collector
 - Validates against policy
 - Returns status to Server Broker
 - Server Broker
 - Collects/consolidates information from Posture Validator(s)
 - Determines access decision
 - Passes decision to Network Access Authority
 - Network Access Authority
 - Validates authentication and posture information
 - Passes decision back to Policy Enforcement Point

What is it?	TCG TNC	Microsoft NAP	IETF NEA
Posture Collector Third-party software that runs on the client and collects information on security status and applications, such as 'is A/V enabled and up-to-date?"	Integrity Measurement Collector	System Health Agent	Posture Collector
Client Broker "Middleware" that runs on the client and talks to the Posture Collectors, collecting their data, and passing it down to Network Access Requestor. In product form, this is generally bundled with the Network Access Requestor.	TNC Client	NAP Agent	Posture Broker Client
Network Access Requestor Software that connects the client to network. Examples might be 802.1X supplicant or IPSec VPN client. Used to authenticate the user, but also as a conduit for Posture Collector data to make it to the other side.	Network Access Requestor	NAP Enforcement Client	Posture Transport Client

What is it?	TCG TNC	Microsoft NAP	IETF NEA
Network Enforcement Point Component within the network that enforces policy, typically an 802.1X-capable switch or WLAN, VPN gateway, or firewall.	Policy Enforcement Point	NAP Enforcement Server	Intermediary Devices
Posture Validator Third-party software that receives status information from Posture Collectors on clients and validates the status information against stated network policy, returning a status to the Server Broker.	Integrity Measurement Verifier	System Health Validator	Posture Validator
Server Broker "Middleware" acting as an interface between multiple Posture Validators and the Network Access Authority.	TNC Server	NAP Administration Server	Posture Broker Server
Network Access Authority A server responsible for validating authentication and posture information and passing policy information back to the Network Enforcement Point.	Network Access Authority	Network Policy Server	Posture Transport Server

InteropLabs Network Access Control Architecture Alphabet Soup

Example: Policy Enforcement

- Users who pass policy check are placed on production network
- Users who fail are quarantined

Example: Policy Enforcement

- Users who pass policy check are placed on production network
- Users who fail are quarantined

NAC Solutions - Last Years Slide

- There are three prominent solutions:
 - Cisco's Network Admission Control (CNAC)
 - Microsoft's Network Access Protection (NAP)
 - Trusted Computer Group's Trusted Network Connect (TNC)
- There are several proprietary approaches that we did not address

NAC Solutions - This Years Slide

- Moving towards industry convergence:
 - NAP and TCG(TNC) are moving ever closer
 - Cisco renewed focus on interoperability with NAP
 - Cisco consolidating their NAC appliance solution
- There are several proprietary approaches that we did not address
- All 3 major players are moving ever closer
- This ultimately benefits you the implementer!
- Still a way to go until nirvana :-)

Microsoft NAP

Network Access Protection

- Strengths
 - Part of Windows operating system
 - Supports auto remediation
 - Network device neutral
- Limitations
 - Part of Windows operating system
 - Not an open standard
- Status
 - Client (Vista) shipping today; will be in XP SP3
 - Linux client available
 - Server Longhorn (Windows Server 2008)

Cisco NAC

Network Admission Control

- Strengths
 - Many posture collectors for client for NAC solution
 - NAC integration with Microsoft NAP
 - Large and diverse installed base of network and security/NAC devices
- Limitations
 - More options with Cisco hardware which may make planning harder
 - Not an open standard
 - Requires additional supplicant with NAC solution
- Status
 - Products shipping today
 - Cool stuff is coming which I expect to be announced soon...

INTEROP

Trusted Computing Group (TCG) Trusted Network Connect (TNC)

- Strengths
 - Open standards based
 - Not tied to specific hardware, servers, or client operating systems
 - Multiple vendor backing Juniper, Microsoft
- Limitations
 - Potential integration risk with multiple parties
- Status
 - Products shipping today
 - Common ground with Microsoft NAP continues to move towards interoperability
 - Updated specifications released May 2007

TNC Architecture

Source: TCG

Getting Started - What's Most Important to You?

Where will NAC apply?

VPN	WLAN	Guests	Desktops	Computer Room	Everywhere
					1

Where Can You Learn More?

- Visit the Interop Labs Booth (#151)
 - Live Demonstrations of many multi-vendor NAC architectures with engineers to answer questions
- Visit Interop Labs online:
 - Interop Labs white papers, this presentation, and demonstration layout diagram
 - Network Access Control

http://www.opus1.com/nac

Unified Communications

http://www.opus1.com/uc

Visit the InteropLabs

See This Presentation Again!

Tuesday	Wednesday	Thursday
4/29/08	4/30/08	5/1/08
		InteropLabs: UC Class 10:00am - 10:45am
InteropLabs: NAC	InteropLabs: NAC	InteropLabs: NAC
Class	Class	Class
11:15am - 12:00pm	11:15am - 12:00pm	11:00am - 11:45pm
InteropLabs: UC Class 12:15pm - 1:00pm	InteropLabs: UC Class 12:15pm - 1:00pm	

Where can you learn even more?

White Papers available in the Interop Labs:

What is Network Admission Control? What is 802.1X? Getting Started with Network Admission Control What is the TCG's Trusted Network Connect? What is Microsoft Network Access Protection? Merger of TNC and NAP What is the IETF's Network Endpoint Assessment? Switch Functionality for 802.1X-based NAC Handling NAC Exception Cases NAC Resources VLANs vs ACLs

Free USB key to the first 600 attendees! (has all NAC and Unified Communications materials)

http://www.opus1.com/nac

NAC Lab Participants

InteropLabs NAC Team Members

Kevin Koster, Cloudpath Networks, Team Lead Rob Nagy, Accuvant Inc, NAC Instructor Craig Watkins, Transcend, Inc. Gerard Goubert, Cisco Systems, Inc. Jan Trumbo, Opus One

Jim Martin, Woven Systems Joel Snyder, Opus One Karen O'Donoghue, NSWCDD Lynn Haney, TippingPoint Technologies, Inc. Mike McCauley, Open Systems Consultants

InteropLabs NAC Vendor Engineers

Asim Rasheed, Ixia Barb Cline, Blue Ridge Networks, Inc. Bhagya Prasad NR, Avenda Systems Bob Durkee, Great Bay Software Charles Owens, Great Bay Software Ernie Brown, Xirrus Corp. Faith Comlekoglu, Blue Ridge Networks, Inc. Greg Hankins, Force10 Networks, Inc. Ingo Bente, Fachhochschule Honnover Jeff Reilly, Juniper Networks, Inc. Josef von Helden, Fachhochschule Hannover King Won, Gigamon Systems LLC Mark Townsend, Enterasys Networks, Inc. Myke Rydalch, Xirrus Corp. Mike Steinmetz, Fachhochschule Hannover Mitsunori Sagae, Cisco Systems, Inc. Nathan Jenne, ProCurve Networking by HP Pat Fetty, Microsoft Corporation Pattabhi Attaluri, Avenda Systems Prem Ananthakrishnan, Cisco Systems, Inc. Rick Duchaney, Great Bay Software Saurabh Pradhan, Trapeze Networks Steve Pettit, Great Bay Software Ted Fornoles, Trapeze Networks Thenu Kittappa, Aruba Networks Tom Maufer, Mu Security Thomas Howard, Cisco Systems, Inc. Tim McCarthy, Trapeze Networks Tom Gilbert, Blue Ridge Networks

http://www.opus1.com/nac

Thank You!

Questions?

Interop Labs -- Booth 151 http://www.opus1.com/nac

